LECTURE NOTES ON K-THEORY

1. LecTURE 1

1.1. Paracompact Spaces. Let X be a topological space. A collection of subsets (A;)icr
is said to be locally finite if for every x € X there is an open neighborhood U such that
U intersects at most finitely many of the A;s nontrivially. A topological space is para-
compact if every open cover admits a locally finite subcover. Clearly compact spaces
are paracompact.

We observe that if (A;) is locally finite then  J; A= |U; Ai. The following are standard
exercises in point-set topology.

Proposition 1.1. Let X be a topological space.

(1) If X is paracompact and hausdorff (T5), then X is normal (Tj).

(2) If X is reqular (T3) and second countable, then X is paracompact.

(3) If X is locally compact, second countable, and hausdorff, then X is paracompact and
o-compact (X is a countable union of compact sets).

A partition of unity for X is a collection of continuous maps {p; : X — [0, 1]}ie1 such

that the collection of support sets supp(pi) = pi_1 (0, 1] is locally finiteand ) ; pi(x) =1
for all x € X. We will say that a partition of unity is subordinate to a cover of X if each
support set is contained in some element of the cover.

The main reason for requiring paracompactness is captured by the following stan-
dard fact.

Proposition 1.2. A hausdorff topological space is paracompact if and only if every open cover
admits a subordinate partition of unity.

It turns out that every metrizable space is paracompact (a result of A.H. Stone). How-
ever this requires stronger axioms for set theory than ZF with Determined Choice.

1.2. (Smooth) Manifolds. Our primary examples of (hausdorff) paracompact spaces
will be manifolds. An n-manifold is a topological space which is second countable
and locally homeomorphic to R™.

1.3. Basic Examples. The most basic examples will be the n-spheres
S™i={(X0y X1,y xXn) ERM T ixd 45+ X2 =1,

Example 1.3. The n-dimensional real projective space RP" is defined to be the set of
lines through the origin in R™'.
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Since any line through the origin is described by either of the antipodal points where
it intersect the n-sphere, a more familiar way the idenitfty RP™ is as the quotient of S™ by
the Z/27Z-action which sends (xg, X1, . . ., Xn) to (—Xg, —X1, . . . , —Xn.). Note that RP' = S,
(Pinch S' to obtain a bouquet of 2 circles, then twist one a half turn and lay it over the
other.) However RP™ and S™ are distinct for n > 2 since 71;(S™) = {1} for n > 2 while
1 (RPM) = 7,/27.

There is another natural realization of RP™ in M, (IR) as the subset of all matrices P
such that P = Pt = P2 and tr(P) = 1 via the map (X0, X1,...,Xn) — [xixj]. The fact that
this is onto follows from the spectral theorem for self-adjoint real-valued matrices.

Example 1.4. In general, if M is a manifold (smooth manifold), and G is a group of
homeomorphisms (diffeomorphisms) which acts freely and properly discontinuously,
then the quotient M /G is again a manifold (smooth manifold). If we drop the asssump-
tion that the group is acting freely, the the resulting quotient is known as an orbifold.

Note that we may view ST as the complex n-sphere
{(z0yZ1y -+ y2Zn) € C™ 2o 4 2P 4 -+ zaf = 11

This realization leads to a wealth of quotient structures on the odd spheres $**~! coming
from the action on each coordinate by the complex units. This is in contrast to the even
spheres where the only nontrivial group which can act freely by homeomorphisms is
7.)27.

Example 1.5. The n-dimensional complex projective space CP™ is the space of all com-
plex lines throught the origin in C™!.

Similarly to real projective space, CP™ is realized as the quotient of the complex
sphere under the relation (zo,z1,...,2zn) ~ (Azo,Az1,...,Azy), where A is a complex
unit. For n = 1, there is a bijection from the equivalence classes [z, z1], z; # 0 and C
via [z9,21] + z9/z1. In this way, CP' is the one point compactification of C (the Rie-
mann sphere) and the map previously described is the stereographic projection from
the point at infinity.

Example 1.6. Letp, q € N. Thereis a free action of Z/pZ on S3, identified as the complex
2-sphere, given by [1](zo,21) := (e2m/Pzy, 2™4/Pz1). The quotient of S3 by his action is
known as the lens space L(p,q).

The next examples we will cover are Lie groups, specifically the orthogonal and uni-
tary groups, which will play a central role later.

1.4. Grassmannians.

2. LECTURE 2

2.1. Lie Groups. A Lie group G is a group which is also a smooth manifold such that
the map G x G > (x,y) — x 'y is smooth.

Given v € TG, one constructs an associated smooth vector field X, on G by X,(g) :=
(Lg)sv. The map [X,, Xy, ](e) then defines a nonassociative algebra structure on TG,
which is known as the Lie algebra associated to G, and is often denoted by g. The
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Lie algebra and the Lie group are essentially two sides of the same coin. For instance,
there is canonical map exp : g — G which is surjective in the case that G is connected
and compact.

We turn our attention to some concrete constructions of Lie groups and their Lie
algebras.

For each n consided the group U(n) of unitary matrices in M, (C),i.e.,all A € My (C)
such that A*A = I where * is the conjugate transpose. In the real case we have the
group O(n) of orthognal matrices in M (R), i.e.,, AYtA = L. Note that O(n) embeds as
a closed subgroup of U(n), and the U(n) is realizable in Mj,(R) (exercise: write this
down explicitly). Being a unitary or orthogonal matrix is determined by a family of
polynomials in the matrix entries, so it is easy to check that both O(n) and U(n) are
(compact) Lie groups.

Proposition 2.1. U(n) is smoothly path connected.

By the spectral theorem any A € U(n) is of the form exp(iT) for T € M, (C) self
adjoint (T* = T), in other words A = exp(T’) where (T’)* = —T'. It is easy to see
that the set of these "skew-adjoint" operators is an nonassociative algebra under the
commutator [S, T] = ST —TS. This is, in fact, the Lie algebra u(n) of U(n) and the map
exp : u(n) — U(n) is just normal exponentiation of matrices.

This shows that for all A = exp(iT), there is a smooth path to the indentity given by
the one-parameter subgroup A := exp(itT) for t € R. It follows that U(n) is smoothly
path connected (exercise).

(Un)fortunately, this is not true for O(n), sinceif A € O(n), det(A) € {—1, 1}, so there
can be no continuous path in O(n) connecting to elements with different determinants.
However, this is the only obstruction. Let SO(n) be the special othogonal group, the
closed subgroup of all orthogonal transformations with determinant 1.

Proposition 2.2. SO(n) is smoothly path connected.

Most of this is left as an exercise. To begin, embed O(n) in U(n) as the subgroup
of all unitaries preserving the canonical real structure on M, (C). Let A = exp(T’) for
some T’ € M,,(C) Since det(A) = exp(tr(T’)), we can assume tr(T’) = 0, and a little
algebra shows that T’ realized in the natural way as a matrix in My, (R) is of the form
T@ T forsome T € My (R) with T = —T. Thus A = exp(T) in M (R). The rest follows
in the same way as smooth path connectivity for U(n). Note that this shows that the
set of all matrices of determinant —1 is also smoothly path connected.

Note that this shows the Lie algebra so(n) is just the skew-symmetric real n x n
matrices where the product is the commutator.

2.2. Homeomorphisms of Spheres. Let S™ be the n-sphere. The antipode map is the

map & : (X0, X1y...,Xn) = (—X0, —X1,...,—Xn), and the canonical reflection is the map

p: (XO)X1)-- ')XTL) = (_X0>X1)---)Xn)~

Proposition 2.3. If n is odd then « is homotopic to id. If n is even, then o is homotopic to p.
To see this, note that O(n) is the also the set of all S™ preserving linear isomorphisms.

Clearly, both & and p are restrictions of elements in O(n) to the sphere, so we will treat
them unambiguously as such. If n is odd, then det(«) = 1, which means there is a path
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in SO(n) connecting « to the identity. This furnishes the required homotopy in the
natural way. In the case that n is even, det(«) = —1 = det(p) and the same reasoning
applies.

Proposition 2.4. Let p : S™ — S™ be the reflection . Then p is not homotopic to the identity.

With a little singular homology theory, the proof is pretty short. It is not so hard to
check the that induced homomorphism p. : Hy(S™Z) — Hn(S™Z) = Z on the n-th
homology groups is the map which sends z to —z. See (Hatcher, Algebraic Topology,
p- 134). Other the other hand, as you probably guessed, id, is the identity homomor-
phism. Homotopic maps induce identical homomorphisms on homology groups.

3. LECTURE 3

3.1. Defining Vector Bundles. Let B be a topological space. A real n-vector bundle
over B is a pair (E, &) consisting of a topological space E and a continuousmap & : E — B
satisfying:
e foreachb € B, £ '(b) has the structure of a finite-dimensional real vector space.
e foreachb € B thereis aneighborhood U C B such that £1(U)is homeomorphic
to U x R™ in a way which respects the linear structure on the fibers.

The space B is referred to as the base space, E is the total space of the bundle, and
£71(b) is the fiber over b. The second condition on (E, &) is referred to as local triviality,
and is crucial for at least two reasons. First, the idea of a vector bundle should capture
the notion of a “continuously varying field of vector spaces” over B, so we want to rule
out things suchas E = B x R™ being a vector bundle over B where Bis B given the dis-
crete topology. Second, we would like to use vector bundles to build global invariants
of the topological space B, so we should exclude the possibility of any interesting local
structure. We will say that (E, ) is an n-bundle if each fiber has dimension n.

Analogously, one can talk about complex vector bundles over B. We now describe
the category Vecty(B) of k-vector bundles over B where k is either R or C. The objects
are in place, so let’s turn to the morphisms.

A morphism of bundles f : (E, &) — (E',&’) is a continuous map such that the re-
strictions fy, : £71(b) — (£/)71(b) are linear for all b € B. The map f is an isomorphim
if an inverse exists and is also a morphism. A subspace F C E is a subbundle of (E, &)
if the restriction (F, &|f) is a vector bundle.

The following observation is extremely useful.

Proposition 3.1. Let f : (E, &) — (E’,&’) be a morphism of vector bundles. Then f is an
isomorphism if fy, is an isomorphism for each fiber.

Pick b € B and let U, V be neighborhoods of b over which E and E’ are trivialized.
Thus locally f is represented by a continuous map f : UNf~1 (V) xR™ — UNf~T (V) xR™,
Defineamap g: UnN (V) = GLn (k) by sending x to the invertible transformation fy.
Itis clear that g is continuous, whence by Cramer’s rule, for instance, g ' (x) = (fy) "is
also continuous. This locally defines an inverse morphism for f. These local inverses can
be seen to agree on the overlaps, so they can be “glued” together to form a global inverse
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morphism. We will say more about this in a later discussion on “gluing” constructions
for vector bundles.

The proof of this proposition is more subtle than it first seems, but working over the
local trivialization is necessary, since replacing the topology on E with the one given

locally by B x R™, for instance, makes the statement of the theorem false.
Example 3.2. There are always trivial bundles B x R™.

Example 3.3. If M C RN is a smooth n-manifold, then TM and T*M are vector bundles
over over M. If f : M — M is a smooth map, then f, : TM — TM and f* : T"M — T*M
are morphisms.

We see that the projection map M x RN — M restricted to TM has fibers isomorphic
with R™. For a system of local coordinates (U, hy), the maps

Ohy
axi

0
Ug xR 3 (u, ) aigc) = (hafw), D ain—(w)
provide a local trivializations for M by the inverse function theorem. A similar argu-
ment works for T*M.

Example 3.4. For RP™ there is the canonical line bundle (E} , v!) consisting of all (L, V) €
RP™ x R™! with v € L. There is the analogous line bundle for CP™.

Example 3.5. For the real Grassmannian Gy (n) there is a generalization of the canonical
line bundle (EX,vk) given by all (V,v) withv € V.

3.2. Sections of Vector Bundles. For (E, &) € Vecty(B), a continuous map s : B — E
is a section if &(s(b)) = b (i.e., s(b) € £71(b)) for all b € B. We can think of sections
as a continuously varying family of vectors over B. We let I'(E, &) denote the family of
sections of (E, ). We will often shorten this to I'(E) when the map ¢ is implicit. Note
that there is alinear structure on I'(E, &) via fiberwise addition and scalar multiplication.
If E is the tangent bundle over M, then an element s € I'(TM) is often referred to as a
vector field.

The next result is extremely important. Basically, it states that a vector bundle is
trivial exactly when there exists a global basis.

Proposition 3.6. An n-bundle (E, &) is isomorphic to the trivial n-bundle B x R™ if and only
if there exist exactly n sections s1,...,sn € I'(E, &) such that {s1(b),...,sn(b)} span £ 1(b)
forall'b € B.

Clearly, the existence of such a family of sections is invariant under isomorphism,
and such a family exists for a trivial n-bundle. (Let (e;) be the canonical basis for R™,
then define s;(b) := (b, e;) € B x R™.) On the other hand, the map f : B x R" — E given
by f: (b, wiei) — ) «si(b), again the right sum is understood to be the sum within
the fiber, is a well-defined morphism of bundles which is a fiberwise isomorphism.
Whence, by Proposition 3.1, f is an isomorphism of bundles.
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4. LECTURE 4

4.1. Classifying Vector Bundles: First Results. The goal of this section will be to work
through some basic examples, distinguishing trivial from nontrivial bundles. We begin
with TS™, the tangent bundle to the n-spheres.

Example 4.1. TS' is trivial.

This is easy to see as s(cos(0),sin(0)) = (—sin(0), cos(0)) is a nowhere zero section
of a line bundle, so Proposition 3.6 applies.

To introduce a bit of notation, we say that a smooth manifold M is parallelizable if
TM is isomorphic to the trivial n-bundle.

Example 4.2. TS? is nontrivial. The tangent bundle to any even-dimensional sphere
TS is nontrivial.

Suppose that s7,...,sn, € T'(TS™) give a trivialization of TS™. In particular, each s; is
nowhere zero. The map s;(x) — |[si(x)||, where || - || is the euclidean norm on R™!, is

seen to be continuous, whence $;(x) = % is also continuous. Thus $;(x) € S™ and

$i(x) L x. We now observe:
Proposition 4.3. If there is a continous map v : S™ — S™ such that v(x) L x for all x € S™,
then the antpodal map is homotopic to the identity.

The required homotopy is given by h¢(x) := cos(7tt)x + sin(mt)v(x) for t € [0, 1].
For S' note that this homotopy just rotates the circle through 7 radians. Since we have
shown in Lecture 2 that the antipodal map is not homotopic to the identity in even
dimensions, we have shown by contradiction that TS?™ is not trivializable. In fact, we
have shown much more:

Proposition 4.4. There is no vector field s € T'(TS*™) which is everywhere nonzero.

This result is colloquially known as the “Hairy Ball Theorem”.

With TS' and TS#" squared away for the moment, we turn to the tangent bundles of
higher dimensional odd spheres. Classification here becomes much more nuanced. We
first observe that TS?*~! always admits a nowhere zero vector field given by

$(X0y X1y -+ oy Xan—1) = (=X1, X0, =X3y X2, + + «y —X2n—1y X2n-2)-
Example 4.5. TS? is parallelizable.

To see that TS? is parallelizable, we will explicitly construct a global basis. To do so,
identify R* with the quaternions H, sending the standard orthonomal basis to {1, 1, j, k}.
This isometrically identifies the euclidean norm with the modulus. The units in H are
thus canonically identified with S3. Since (right) multiplication by a unit leaves the
modulus unchanged, we can view right multiplication by a unit as an orthogonal trans-
formation of R* (hint: use the polarization identity for inner products). Thus for any
z € $3, {z,iz,jz, zk} is again an orthonormal basis. Thus s.(z) := ez for e € {i,j, k}
defines a family of three fiberwise linearly independent sections of TS® as s¢(z) L z for
all z € S3. Hence, TS is isomorphic to the trivial 3-bundle over S3. Tt is an exercise to
write these sections in terms of coordinates in R?.
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Example 4.6. TS’ is parallelizable.

This follows in more or less the same way as for TS® using the division algebra struc-
ture on the octonions O@. We have thus exhausted all real division algebras, and in fact
all parallelizable spheres! We will see later that the two are very much related.

Example 4.7. The n-torus T™ is the n-fold direct product of S'. The coordinate embed-
dings smoothly realize T™ in R*™. T™ is parallelizable.

The tangent bundle TT™ is isomorphic in the obvious way to the n-fold product of
the bundles TS, each of which is trivializable.

Example 4.8. Let L be a compact orientable surface of genus g. Then L is not paral-
lelizable unless g = 1, i.e., the euler characteristic x(X4) =2 —2g = 0.

This is a nontrivial result. Let s € I'(TZ) be a vector field with (finitely many) isolated
zeroes. Letx € L4 be a point where a zero occurs. Pick a small closed disc around x (one
that lies inside a chart in some atlas) on which no other zero occurs. By normalizing s
on dD = S', we obtain a continuous map gy : S' — S' known as the gauss map. We
define the index indy(s) of the vector field at x to be the winding number of the gauss
map gx. (In higher dimensions this is the element in Z = Hom(Z,Z) given by (gx)« :
Hn(S™Z) — Hn(S™Z).) The Poincaré-Hopf theorem states that ) | ind,(s) = x(Zg)
where the sum is understood to be over all zeroes of the vector field. With a little more
work, this implies that there is no everywhere nonzero vector field on any compact
orientable surface with nonzero euler characteristic.

Example 4.9. A Lie group G is parallelizable.

Pick a basis vi1,...,vn € TGe. Define vector fields si(g) := (Lg)svi fori = 1,...,n.
Note that (L9_1 )« o (Lg)sx = (L¢)+ = id7g,, from which it follows that s7,...,s, form a
global basis for TG.

As a consequence, no even-dimensional sphere can be given the structure of a Lie
group. In fact, S' and S* are the only spheres which admit a Lie group structure. We
have that ' = U(1) and S* = SU(2) since an element A € U(2) with det(A) = 1 is of
the form A = <_(XB g) with |o? + |B[* = 1.

Example 4.10. Take the quotient of [-1, 1] xR given by the identification (1,t) ~ (—1,—t).
This produces a line bundle (E, ) over S! known as the Mobius bundle.

Proposition 4.11. The Mébius bundle on S' = RP! is isomorphic to the canonical line bundle

v

Define a map @ : [~1,1] x R — E' as follows. If x € [0,1] map (x,t) — (e'™, te™),
and if x € [-1,0], map (x,t) — (el™ telmt). This passes to a bundle isomorphism
0:(E,u) — (E',y"). Note we are identifying R? and C without any attendant shame.

Similarly, the canonical line bundle vy, on RP™ can be seen as the quotient of the
trivial bundle line bundle on S™ by (x,t) ~ (—x,—t). Realizing the trivial line bundle
as the normal bundle NS™ by (x,t) — (x,tx) gives vl as the quotient of NS™ under
(x,tx) ~ (=x, tx). It is easy to see that the quotient of NS™ under (x, tx) ~ (—x, —tx)
gives the trivial line bundle on RP™.
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Proposition 4.12. For each n, the canonical line bundle (Ell,yll) is not trivializable.

For line bundles trivializabilty is equivalent to the existence of a nowhere zero sec-
tion. Let s € I'(y)) be a section. Precomposing with the quotient map S™ — RP™, we
have a maps § : S™ — E}, 50 3(x) = (x,t(x)x) for some continuous mapt:S"™ — R
Since 3 facotrs through RP™ we have

§(—x) = (=%, t{—=x) - (—x)) = (—x, —t[—x)x) = (x, t(x)x) = §(x)
so t(—x) = —t(x). Every continuous, odd function on the sphere must achieve zero

somewhere by the intermediate value theorem, whence yll admits no everywhere nonzero
section.

5. LECTURE 5

5.1. Subbundles of Trivial Bundles and Frames. Before discussing abstract construc-
tions (direct sums, (alternating) tensor products, etc.) over vector bundles, we pause to
look at the more concrete notions of sum and complementation when two bundles are
sitting within the common “frame” of a larger, trivial bundle.

Let (E, &) € Vectg(B) be a subbundle of the trivial bundle B x RN. We will say that
(E, &) is complemented in B x RN by the subbundle (F, 1) if the fibers of F at each point
is the orthogonal complement of the fiber of E, i.e., Fp, = Elf for all b € B. We will say
that (E, &) and (F,1) form an internal direct sum decomposition of B x R if E and F
fiberwise span RN,

In fact any subset any F C B x RN which complements a subbundle in this way is
automatically a subbundle.

Proposition 5.1. Let E C B x RN be a subbundle. Setting EL to be the fiberwise orthogonal
complement of E, then B+ is also a subbundle.

Let Py be the orthogonal projection from RN onto Ey. Since E is a subbundle, the
map B > b — P, € Hom(RN,RN) is continuous, whence for any b € B there is an
open neighborhood U and a continuous map ¢ : U — GLN(R) such that Py, = @ TPy oy
for all x € U. In fact, one can take ¢ : U — O(N), without loss of generality. The
map P(x) := @(x)Py, gives a fiberwise linear homeomorphism U x R™ = E|;, zn Where
n = dim(Py). Likewise pt(x) = (p(x)P}f gives a fiberwise linear homeomorphism
U x RN = B4}, gn which shows that E+ is also a subbundle.

Proposition 5.2. If E and F are subbundles of B x RN which form an internal direct sum
decomposition, then F is isomorphic to EL.

By the Gram-Schmidt process there is a continuous map ¢ : B — GLn(R) so that ¢y,
maps F, isomorphically onto Eﬁ.

Example 5.3. For a smooth manifold M C RN, the tangent and normal bundles com-
plement each other in M x RN.

Example 5.4. The map 6 defined immediately after Proposition 4.11 and a copy of it
given by rotating the circle 1/2 radians give two complemented copies of the Mdbius
bundle in S' x R2.
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Example 5.5. Generalizing the previous example, The quotient of S™ x R™ under the
relation (x,v) ~ (—x, —v) decomposed as an internal direct sum of n + 1 copies of the
canonical line bundle v],. It way also be seen to decompose as the sum of the tangent
and normal bundles over RP™.

Given a bundle (E, ) € Vectr(B) a frame is an embedding of E into a trivial bundle
B x RN. There is an alternate description on frames given by essentially by the proof of
Proposition 3.6

Proposition 5.6. A vector bundle (E, &) embeds in B x RN if and only if there are sections
S1y...ySN € I'(E, &) such that {s1(b), ..., sn(b)} spanes the fiber at b for all b € B.

Proposition 5.7. If B is compact, then every vector bundle over B admits a frame.

Let (E, &) € Vectgr(B). Since B is compact, we can pick a finite collection (U, @)1,
of local trivializations @; : Ey, — U; x R™ of (E, &) along with a subordinate partition
of unity {p1,...,pn} (We can repeat elements of the cover to so that the indices match).
We define maps @i : E — B x R™ by @i(x) = (x, pi(x)@i(x)) if x € U;j and §i(x) = (x,0)
otherwise. One can check that the image ¢ := x* ;@i : E — B x R™" is a subbundle
and that ¢ is an isomorphism of E with its image.

Exercise 5.8. The Mobius bundle admits two local trivializations on the open sets ob-
tained by removing the north or south pole of S'. Use this to construct an explicit frame
embedding for the Mobius bundle in S' x R2.

6. LECTURE 6

We conclude with a few remarks expanding on what is implicit in the constructions
above. To set some notation, let Proj(RN) C Hom(RN,RN) = My (R) be the set of all
orthogonal projections. First,

Proposition 6.1. There is a bijective correspondence between n-subbundles of B x RN and
continuous maps f : B — Proj(RN) where the image of each point has rank n.

For a subbundle E C B x RN the map is obtained by mapping b to the orthogonal
projection onto its fiber. In the reverse direction, consider the subset E¢ := {(b,V) :
fp(v) = v}. For each b € B there is an open neighborhood U so that for all x € U,
fx and fy are sufficiently close orthogonal projections, thus there is a canonical ¢, €
GLn(R) which conjugates the two, fy = @ Tty @y and varies continuously in x. Thus
identifying R™ with the fiber at b, @ : U x R™ — E¢|y given by @(x,V) := (x, pxv) is a
local trivialization. Thus E; is a subbundle.

This observation can be rephrased slightly:

Proposition 6.2. For a compact space B, there is a bijective correspondence between subbundles
of B x RN and elements p € Mn(Cgr(B)) satisfying p = pt = p?, where Cg(B) is the ring of
continuous real-valued funcitons on B.

This follows by the algebra isomorphism My (Cr(B)) = C(X, Mn(R)) where C(X,Y)
denotes the space of continuous maps from X to Y.
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The set €Y of all n-subbundles of B x RN can be topologized by, for instance, taking
the supremum of the hausdorff distances between unit balls in the fibers of the bundles
over all points b € B. There are many other ways to describe this topology such as by
the subspace topology on the contiuous maps in C(B, Mn(R)) whose image lies in the
rank n projections.

Proposition 6.3. Let B be compact. For any E € EY there is an open neighborhood U such that
E is isomorphic to F for all F € U.

In particular this implies that all vector bundles belonging to any single connected
component of €N are in the same isomorphism class. However, N may not be suffi-
ciently large relative to n for the converse to hold, i.e., vector bundles in two distinct
connected components may be isomorphic. We will discuss these issues in detail later.
The point here is that while it seems like there is a vast continuum of subbundles of a
trivial bundle, they actually come in discretely many flavors. This is the first indication
as to why the study of vector bundles belongs in the realm of algebraic topology and
homotopy theory.

To see why this holds, note that if F is an n-subbundle sufficiently close to E, then their
unit balls in each of the fibers are uniformly close. This means there is some neighbor-
hood V of the identity in GLy(R) and a continuous map f : B — V such that fyEy, = Fy,
for all b € B, whence E and F are isomorphic.

6.1. Inner Products. While not every vector bundle over a paracompact space admits
a frame, we have, in a sense, the next best thing.

For a vector bundle (E, &) € Vect(B), define E xg E :={(x,y) € ExX E: &(x) = &(y)}-
The projection map & : E xg E — B is the restriction of & x &. An inner product for
(E,&)isamap (-,-) : E xg E — k which restricts to a nondegenerate inner product over
each fiber.

Proposition 6.4. If B is paracompact, then any vector bundle over B admits an inner product.

Let {(Ui, @i)}ic1 be a local trivialization for (E, &) which is locally finite. Pick a parti-
tion of unity {pi}icr subordinate to this cover with supp(pi) C U;. (By repeating an ele-
ment of the cover multiple times we can assume the cover and partition are indexed by
the same set.) The trivial bundle U; x k™ admits an inner product (-, -)(x, v, w) := (v, w).
This defines an inner product (-, -); on Ely, by precomposition with ¢;. We can then de-
fine a inner product on E by

()= Y (i (pro ).
i€l
7. LECTURE 7

7.1. The Gluing Construction and Cocycles. Let (E, &) € Vecty(B) be a vector bundle
with fixed local trivialization {(Ui, ¢i)}ic;. The maps @; o (pj_1 (U N Uy) x k™ —
(U; N U;) x k™ define maps gy; : U; N U; — GLy (k) by

109 (x,v) = (x, g5 (x)v).
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By this identity, the maps gj; satisfy the identity
9ijJik = Gik
when restricted to the common domain U; N U; N Uy.
For a topological space B equipped with an open covering {U,}ic1, we will call any
such set of maps gy : U; N Uj; — GLn (k) a cocycle over B. You are probably wondering

at this moment whether every cocycle comes in a natural way from a vector bundle over
B: the answer is “yes.”

Proposition 7.1 (Gluing Construction). For every cocycle {{U;},{gij}} over B there is a vector
bundle (E, £) with local trivializations {(Uy, @1)} such that gi; = @; 0 (p;] lunuy; foralli,j € L.

Let X := [ [;c; Ui so that F := [ [;; U; x k™ is a trivial bundle over X with projection
map 7. Define an equivalence relation on F by (x,v) ~ (x, gij(x)v) for (x,v) € U; x k™
and (x, gij(x)v) € U; xk™. Writing E := F/ ~, then 7 descends to a projection 7. : E — B.
We see that (E, 7t.) is a vector bundle, since the local trivializations (U, ;) are just the
liftings of U; over the quotient. From this it is automatic that ¢; o (p]._1 = gy!

The gluing construction is the “adjoint” of the map which sends a vector bundle
(with a specific local trivialization) to its associated cocycle. To be precise:

Proposition 7.2. let (~E,~ &) be a vector bundle, with local trivialization {(U;, @;)} with associ-
ated cocycle gi;. Let (E, &) be the vector bundle obtained from gy via the gluing construction.
Then E and E are isomorphic.

To see this, note that literally by construction to total map

(JJeo)-:E=]JUixk™) —E

is well-defined and a linear isomorphism on each fiber, thus is an isomorphism.

Note that if we have two cocycles {{U;}, {gi;}} and {{Vi}, {hy;}}, by taking the common
refinement of the two open covers, and restriciting the maps appropriately, we may
assume that both cocycles are defined over a common open cover of B.

The main question then becomes, “Given two cocycles gi; and hy; over a common
open cover {U;} of B, how can we tell whether the associated vector bundles are iso-
morphic?” We say that a cocycle is trivial if there are maps A; : U; — GLy (k) so that
gij = )\17\;1 |uimuj . More generally, we will say that the cocycles gi; and h;; are equivalent

or cohomologous if gi; = Ajhy; 7\; ! for maps A; as before.

Proposition 7.3. If {{U;},{gi;}} and {{U;}, {hy;}} are cocycles over B, then they are equivalent if
and only if the induced vector bundles are equivalent. To put it another way, two vector bundles
are isomorphic if and only if they have equivalent cocycles over some (any) common locally
trivializing cover.

Let (E, &), (F,n) € Vect,(B) and choose a common locally trivializing cover {U,}ic1
with respective local trivializations {(U;, i)} and {(U;,1)}. Suppose we have an iso-
morphism f : E — F. Then the map

—1
ui x k" (Pl—> E|u4l L F|u.1 & ui x k™
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is a fiberwise isomorphism, whence induces a map A; : U; — GLy(k). It is easy to
check that giEj = )\igfj)\]f 1. Conversely, suppose that giEj and giFj are equivalent so that
g% = 7\1_195.7\1-. Defineamap o: [ [(U; x k™) — [[(U; x k™) by

o:U; x K" > (x,v) = (x,A{(x)v) € U; x k™.
The o descends to a well-defined, fiberwise isomorphic map o. : [ [(U; x k™)/ ~ g% —

[T(U; xk™)/ ~ gf) As previously discussed these two bundles are isomorphic to E and
F respectively; thus, E and F are isomorphic.

By way of an example, let {Uj,,} be the open cover of S' the the open sets ob-
tained by removing the second and fourth quarters of the circle, respectively. Then
Uy nU, = (0,7t/2) U (7, 37t/2). Since this set is the union of two connected sets, up to
equivalence, any cocycle g1, : Uj N U, — GL1(R) assigns a value of either 1 or —1 to
each interval. If the signs are the same, then the bundle is trivial. In the case (—1,—1)
the gluing construction creates a “strip with two twists.” If the signs are opposite, then
the associated bundle is the M6bius bundle.

8. LECTURE 8

8.1. Sums, Tensors, and Other Categorical Constructions. We know that there are
many categorical constructions for vector spaces — direct sums, tensor products, dual
spaces, conjugate spaces, alternating tensor products, etc. Thinking of all k-vector
spaces as Vecty (pt) (“pt” denotes — you guessed it — the one point space) we wish to
extend these constructions to Vecty (B) for B an arbitrary topological space. Of course,
if we wanted to take, say, the dual bundle (E*, £*) to (E, &), then it is logical that fiber-
wise this should be E* = [, .5 (Ex)*. The tricky issue is exactly what topology to assign
to give a natural bundle structure. Again, by way of example, if f : E — F was a bundle
morphism, then the dual map f* : F* — E* defined fiberwise should again be a bundle
morphism. The goal here is to show that the gluing construction provides a correct and
unifying framework for understanding these constructions.

Let T be a (perhaps contravariant) functor from Vecty (pt) to Vecty. (pt). We will say
that Tis continuous if f — 1(f) is continuous from Hom(V, W) to Hom(t(V), t(W)) (or
Hom(t(W), t(V)) in the contravariant case). For a vector bundle (E, &), let {{U;},{gi;}} be
a cocycle for which the gluing construction yields an isomorphic copy of (E, &). The vec-
tor bundle (T(E), t(&)) is then given by [ [(U; x T(k™))/ ~ T(gyj), i.e., the bundle induced
by the cocycle T(gi;) which is still continuous since T is continuous. This construction
preserves the relation of triviality and two cocycles with a common refinement yield
isomorphic constructions, from which it follows that this construction is well-defined
up to isomorphism. Moreover, if f : E — F is a bundle morphism, then the fiberwise
defined map (f) : T(E) — 7(F) (or 7(f) : T(F) — 7(E) in the contravariant case) is by
construction a bundle map.

Here are some examples:

(1) the dual bundle E*.

(2) the complexification E of a real bundle E.

(3) the conjugate bundle E of a complex bundle. Asareminder the conjugate vector
space V has the same additive structure as V, but Av = A - .
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4) the k-alternating tensor power E.
( 8 p

Direct sums and tensor products are handled similarly. For (E, &), (F,1) € Vecty(B),
the direct sum or Whitney sum (E & F & @ 1) is given by taking the direct sum of

associate cocycles over a common open cover, i.e., gEEBF = giEj @ gf] The tensor product

ij
is given by the cocycle giE]@F = giEj ® gf)
Example 8.1. For (E, &), (F,11) € Vectk(B), the bundle Hom(E, F) can be identified with
E*®F.

Exercise 8.2. Show that if E € Vectg(B) is a line bundle, then E ® E = B x R and if
E € Vecte(B) thenE® E = B x C.

8.2. Pullbacks. An easy way to construct a vector bundle over a space is to borrow
(or steal) one from another space. As we will see later, the Grassmannians will be
particularly generous benefactors. Given topological spaces B, A, a continuous map
f: B — A, and a vector bundle (E, &) € Vecty(A), the pullback of (E, &) along f, de-
noted as (f*E, f*&), is the vector bundle fitting into the following commutative diagram:

f*&£ —— E

f*&l al

B — A

Such an object can be constructed quite naturally as f*E = {(x,b) € E x B : {(x) =
f(b)}. The map f*& is just the restriction of the projection 7tg : ExB — B and the top map
is the restriction of 7te. Why is this a vector bundle? Picking a cocycle {{U},{gy;}} repre-
senting E, then f*E can be identified with the bundle given by the cocycle {{f~'U;},{gij o
1.

Exercise 8.3. For B C A, the restriction E|g of a vector bundle E € Vecty(A) can be
identified with the pullback of E along the canonical inclusion B — A.

Exercise 8.4. For (E,¢), (F,n) € Vect,(B) show that E ® F = £*F = n*E.

Exercise 8.5. Show that the pullback of the Mdbius bundle over the map f(0) = 20
yields the trivial line bundle over S'. Hint: pick a cocycle for the Mobius bundle and
compute the new cocycle on S! under the pullback.

9. LECTURE 9

9.1. Structure Groups. Let G be a topological group. Suppose for a space B admitting
some open cover {U;} we have a set of continuous maps gi; : U; N U; — G satisfying
the cocycle condition gij(x)gjk(x) = gi(x) for all x € Ui N U; N Uy. We will then say
that G is the structure group of the cocycle {gi;}. So to rephrase things slightly (and
to sweep a few details under the carpet until later) we can think of a vector bundle as
cocycle with structure group GL,, (k). Since, working over GL, (k) can be unwieldy in
may situations, we would like to replace any GL, (k)-valued cocycle with an equivalent
one in a smaller, more manageable group. It turns out that we can always do so:
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Proposition 9.1. Any real (resp., complex) vector bundle (E, &) over a paracompact space B
admits a cocycle with structure group O(n) (resp., U(n)).

By Proposition 6.4 there is an inner product on E. Let {U;} be a cover over which
there is a local trivialization for E. For the local trivialization on U; this inner product
induces an inner product (-, -)x on k™ for each x € U;, whence (-,-)x = (Ay-,-) for
some nondegenerate positive definite matrix A, depending continuously on x. Setting
Ai(x) = Al/ 2 we see that Aigij ?\j_] fiberwise preserves the standard inner prodict on k™.
Thus gy; is equivalent to a cocycle with structure group O(n) in the real case and U(n)
in the complex case.

9.2. The Bundle Homotopy Theorem. We have seen in Lecture 6 that if two n-vector
bundles E, F C B x kN belonging to the same path component in the the the space of all
n-subbundles of B x k™, then E and F are isomorphic. The Bundle Homotopy Theorem
is a generalization of this result. Before stating it, we give a preliminary lemma.

Lemma 9.2. Let B be a paracompact, hausdorff space and A C B be closed. If (E,&) €
Vecty(B), then any section s € T'(E|a) extends to a section § € T'(E).

Pick a cover {U;} of B by local trivializations of E. Then s|znu, can be viewed as a
vector-valued map on A N U;, whence by the Tietze extension theorem (recall paracom-
pact spaces are normal) extends to a section §; € I'(E[y, ). Choosing a partition of unity
{pi} subordinate to the cover, we can then define §(x) := ) _; pi(x)5i(x).

Proposition 9.3 (Bundle Homotopy Theorem). Let B be a (para)compact, hausdorff space,
A a topological space and f,g : B — A homotopic maps. Then for any (E, &) € Vecty(A),
*(E) = g*(E).

We will assume that B is compact. Let h : B x [0,1] — A be the homotopy from f
to g. We have the pullback h*(E) and we define E; € Vecty(B) to be h*(E) restricted to
B x {t}. We will show that if E; = F, then there exists ¢ > 0 such that E; = F for all
s € (t — e,t + €). The result will then follow by the connectedness of [0, 1].

We first use the pullback under the projection 7tg : B x[0, 1] — B to extend F to a vector
bundle 7tz F over B x [0, 1]. Note the restriction of 7tz F to B x {t} is naturally isomorphic
to F for all t. Since E; and F are isomorphic there is a section o : B — Hom(E¢, F) such
that o(b) is invertible for all b € B. Identifying B with B x {t} and Hom(E, F) with
Hom (h*(E), 3 F) restricted to B x {t}, by the previous lemma s extends to a section
6 :B x [0,1] — Hom(h*(E),nF). Since the GL, (k) is open in Hom(k™, k™) it follows
that for all b € B there is an open neighborhood of (b,t) in B x [0, 1] where & takes
values in the invertibles. Passing to a finite subcover there is a strip B x [te,t + €] on
which & takes values in the invertibles. This means that for all s € [t — €,t + €] there is
an isomorphism of E; and 73 Flg () = F.

It is an exercise to adapt this proof to the paracompact setting. Truthfully, our proof
actually suggests the following convenient restatement, which can be seen to be equiv-
alent:

Proposition 9.4 (Bundle Homotopy Theorem, general version). Let B be a paracompact,
hausdorff space. For any vector bundle E over B x [0, 1] the vector bundles £, E1 € Vecty(B)
obtained by restricting to B x {0} and B x {1} are isomorphic.
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Here is one of the main corollaries of the Bundle Homotopy Theorem:

Proposition 9.5. If B is paracompact, hausdorff, and contractible, then every vector bundle
over B is trivial.

Choose a point x € B. Since B is contractible the identity map id is homotopic to the
constant map ¢y : B — {x}. For (E,&) € Vecty(B), E = id*(E) while on the other hand
ci(E) is trivial.

For a paracompact, hausdorff space X we define the cone CX over X to be the quotient
of X x [0, 1] obtained by identifying X x {1} to a single point. Note that CX is contractible,
whence all vector bundles over CX are trivial.

10. LecTUrE 10

The Bundle Homotopy Theorem gives strong evidence that the study of vector bun-
dles properly belongs to the realm of algebraic topology. The main goal of the next
several lectures will be to develop this idea in precise detail.

10.1. Clutching. We will focus on one straightforward but profound consequence of
the Bundle Homotopy Theorem:

Proposition 10.1. Let B be a paracompact, hausdorff space. Suppose that B is locally con-
tractible, i.e., B admits an open cover {U;} where each U; is contractible. Then every vector
bundle over B can be obtained from the gluing construction for some cocycle {gi;} defined over

{UWs}.

We first apply this over the spheres where it is known as clutching. Specifically
we write S* = DT Ugn1 D™ where DI} are the northern and southern hemispheres
(topologically both are the (closed) n-disk) and S™~' = D} N D" is the equator. The
previous proposition tells us the any N-vector bundle over S" is determined by a single
continuous map g : S™ — GLn(k) as the cocycle condition is trivially satisfied. Note
that technically we should enlarge the hemispheres slightly and speak of the map g as
being defined over a band ST x (—e, €), but as we will see this works out to the same
thing.

[Here I went over examples of clutching maps for TS? and CP'. There is a strong pictorial
component to these arguments which may take some time for me to reproduce here. In the mean-
time see Hatcher.]

Proposition 10.2. If f, g : S — GLn(k) are homotopic then the vector bundles E¢, By €
Vecty (S™) induced by clutching are isomorphic.

Choose a homotopy h : S*! x [0, 1] — GLy/(k). Since {DT x [0, 1], D™ x [0, 1]} gives a
cover of S™ x [0, 1] with intersection S™! x [0, 1] we can apply the gluing construction
over h to create a vector bundle Ey, over S™ ! x [0, 1] whose restrictions to S™ x {0} and
S™ x {1} are isomorphic as S™ bundles to Er and Eg, respectively. By the general form of
the Bundle Homotopy Theorem E¢ = Eg.

For two topological spaces X and Y, we define [X, Y] to be the space of all homotopy
classes of maps from X to Y with the quotient compact-open topology from YX. The
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previous proposition thus shows there is a map [S", GLy (k)] — Vect{:' (S™). In the
case that k = C we will now show that this is an isomorphism.

Proposition 10.3. There is a bijective correspondence between Vect® (S™) and [S™', GLy/(C)].

We have already defined the map in one direction, so let’s construct the inverse. Since
{D%, D'}is a contractible cover, any vector bundle over S™ is obtained from some clutch-
ing function over g : S* ' — GLy/(C). Recall that the choice of this clutching function
(cocycle) is not well-defined but any other such choice g’ : ST — GLN(C) will be
equivalent via maps A, : D} — GLN(C) and A_ : D — GLn(C). However, recall that
GLN (C is path connected, whence as D'} are contractible A+ are homotopic to constant
maps to the identity, thus g’ = A=_'gA\, ~ g. This shows that the map from a vector
bundle to the homotopy class of its clutching function is a well-defined inverse to the
gluing construction.

Exercise 10.4. Modify this proof to show there is a bijective correspondence between
the oriented, real N-bundles VectE’ +(S8™) and homotopy classes [sn-1 GL{ (R)]. (Recall
GLT\“, (R) is all invertibles with positive determinant.)

In fact there was nothing particularly special about S™ here. For any space X, we
define the suspension SX as the quotient of X x [—1, 1] given by identifying X x {—1}a
single point and X x{1} to a single point. Note that SX = CX_Ux (0 CX,, where CX. are
copies of the cone over X. When X = S™! this is nothing other than the hemispherical
decomposition we have been working with above. Moreover, since the cones are always
contractible, we have that the reasoning above applies verbatim, so:

Proposition 10.5. Let X be a (para)compact, hausdorff space. Then there is a bijective corre-
spondence between Vectg (SX) and [X, GLN(C)].

Since for any clutching function g : X — GLn(C) we can reduce its structure group to
U(N), by using the above identification we have that [X, GLy (C)] = [X, U(N)]. However
this can be seen much more directly:

Proposition 10.6. U(n) is a deformation retract of GL,(C).

Let A € GL,(C). By polar decomposition A = u|A| for some u € U(n). Since |A] is
positive and invertible, it can be checked that t|A[+ (1 —t)]1 is invertible for all t € [0, 1].
The maps h; : A — tu|A[ + (1 — t)u provide the deformation retract.

Since U(n) is path connected, the space of based homotopies is equivalent to the
space of unbased homotopies, whence we have that

Vectg (S™) = [S™, U(N)] = 75,1 (U(N)).

What are these groups? Much like in the case of homotopy groups of spheres, they are
still largely mysterious. However, consider the inductive limit U := lim U(n) under the
connecting maps imn : U(m) — U(n) where form <n

L Um) 3 A (A 9,
’ 0 ]n—m
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We have that m (U) = lii)nﬂk(U(n)) under the connecting maps (immn)« : m(U(m)) —
m(U(n)). Miraculously, it turns out that m(U) is computable and in fact 7ro(U) = 0,
m(U) = Z, and 7y, (U) = mi(U)! This result is a consequence of the Bott Periodicity
Theorem.

11. LeCcTURE 11

11.1. Principal G-bundles. [There was a presentation by Joe Knight on this topic]

11.2. Defining K~'(X). From the clutching construction we have seen that Vect (SX) =
[X, U(N)] If X is compact the inductive limit topology on U is compatible with the quo-
tient compact-open topology on [X, U(n)] whence lii>n[X, Un)] = [X,Ul.

For a compact space X, we then define K~ (X) := [X, Ul.

12. LECTURES 12

12.1. K7'(X) as an abelian group. We will now discuss the abelian group structure on
K=1(X). For maps g1,92 : X — U there are two immediately obvious ways of going
about taking a product of [g1], [g2] € K_1(X). First one could use the fact that the range
has a group structure to define [g1] * [g2] = [g192]. Secondly, more in keeping with the
vector bundle perspective, one could notice that by compactness the ranges of these
maps must both be contained in U(n) for some n sufficiently large, so we could define
[g1] + [g2] := [g1 © g2], where

(g1 @ g2)(x) == (91éx) gﬁx)) eU(2n) c U.

It is a quick exercise to check this operation is well-defined at the level of homotopy
classes. By post-composing with a rotation, we see that g1 © g, and g, @ g7 are homo-
topic, whence [g1] + [g2] = [g1 @ 92] = [92 ® g1] = [g1] + [g2] which shows that “+” is at
least a commutative operation on pairs of homotopy classes.

Let’s get back to that first operation we defined. For the block embedding U(n) x
U(n) c U(2n), let p; be a path of rotations such that py is the identity and conjugat-
ing by p; interchanges the two copies of U(n). Thus for g1,g; : X — U(n) we have
that g; pt_]gzpt : X — U(2n) shows that [g1] * [g2] = [g1] + [g2]. This also establishes
associativity of the sum, thus summation gives an abelian monoid structure to K~ (X).

We will now show why K~ (X) is actually a group. First note that for 1x, the constant
maps to the identity, we have that [g] + [1x] = [g - 1x] = [g], whence [1x] is the identity.
The natural candidate for the inverse of [g] is [g7'] where g~'(x) := g(x)~!. Since this
is just post-composing with the continuous inverse for U it is easy to check this is well-
defined at the level of homotopy classes. Thus [g~'] + [g] = [g~'g] = [1x], so we have
defined an inverse.

Let’s see what is going on from the point of view of vector bundles. If E is a vector
bundle on SX, then as SX is compact, we have that E C SX x C™ for some n sufficiently
large. Let E* be the complement of E and let g* be its clutching function. Then it can
be checked that g - g* = g* - g is a clutching function for the trivial bundle, whence
[g'] = —[g]. However, it is not immediately clear why constructing the inverse this



18 LECTURE NOTES ON K-THEORY

way is well-defined. We will revisit this issue later when we construct K°(X). It turns
out that there is a multiplication structure on K_;(X) making it a ring, but this is also
slightly opaque to define without first describing Kp.

Note that while there is a bijective correspondence between complex N-bundles and
[X, U(N)], there is not quite such a correspondence at the level of K~T(X) as we have
effectively “squished” all of the trivial bundles to a single class. What to do about this
at the level of K° will be the distinction between reduced and unreduced K-theory.

13. LECTURE 13

The computation of K~'(X) will lie out of reach for most basic examples without
developing more machinery. However, for the moment, let's compute one extremely
important example, K~'(S). First note that if X and Y are homotopy equivalent, then
K=1(X) = K~T(Y). Thus if K1 (X) = 0 for X contractible. Since U is path connected, we
also have that K_;(S%) = 0.

Proposition 13.1 (“Baby Bott”). K=1(S") = [S", U(1)] = Z as groups.

Any element of K~1(S) is represented by amap g : S' — U(n) for some n sufficiently
large. The map p : U(n) — S ! which reads off the rightmost column vector is a
principal U(n—1)-bundle,ie., Un)/Un—1) = $?"~1. We have thatprog: S' — $?*!
is contractible to the constant map to the coset of the identity if n > 2. Since any fiber
bundle has the homotopy lifting property (see Hatcher, Algebraic Topology, p. 379),
this lifts to give a homotopy from g toamap g’ : S' — U(n—1). We see that the desired
conclusion holds inductively.

Thinking about this a little more, it follows that 711(SU(n)) = 0 for all n, whence
explicitly g is homotopic to det(g). As a side note it can be shown that U(n) is rationally
homotopy equivalent to S x S3 x --- x §?"~1,

The canonical generator of K~1(S') is [z + z] which as a clutching function gives the
canonical line bundle y' over CP' = S2. This is known as the Bott element.

Note that the previous proposition can be easily restated as:

Proposition 13.2. Every complex vector bundle over S* is a line bundle or a sum of a line
bundle and a trivial bundle.

13.1. Vector Bundles and Homotopy Theory. We have already established that
Vect}é (SX) = [X, U(k)]. Is there a target space such that Vect}é(X) = [X,Y]? Whether you
appreciate being asked leading questions or not, the answer is, “yes,” and we will now
set about demonstrating this.

For natural numbers k < n, recall the complex Grassmannian manifold Gry, =
Gry,n(C) is the space of all k-dimensional subspaces of C™. On can topologize this for
instance by realizing Gry , as the space Px(n) = {p € M,(C) : p =p* = p?,tr(p) = k}
of all rank k projections with the restriction of any of the natural topologies on M,,(C).
Remember there is a canonical (tautological) vector bundle (Ey n,Ykn) defined as all
pairs (V, V) where V C C" is a k-dimensional subspace and v € V.

The Stiefel manifold Vi ,, is defined to be the set of all orthonormal k-tuples of vec-
tors in C. The projection map p : Vi n — Gryn which sends such a k-tuple to its span
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clearly has the structure of a principal U(k)-bundle. In fact, Vi n ®yj) C* is isomorphic
to the tautological bundle on Gry ,.

There is a natural embedding Gry n — Gry n41. We define Gry o to be the inductive
limit. Similarly, we construct the inductive limits of the Stiefel manifolds, Vi . The
inductive limit of the projections py, : Vi n — Gryn gives a projection p : Vi oo — Gry oo
again forming a principal U(k)-bundle.

We write Vecté“(X) to be the set of all complex k-bundles over X which admit an
n-frame. We also write [X, Gry oo]n to be all homotopy classes in [X, Gry ] represented
by maps whose image lies in Gry ..

Proposition 13.3. Let X be a compact space. There is a bijective correspondence between
(X, Gry,co)n and Vect}é“(X) given by [f : X —= Grin] — f*(vin).

This is a well-defined map by the Bundle Homotopy Theorem, so we need only con-
struct an inverse. For E € Vect('é“(X) we can realize E C C™. Let g¢ : X — Gry be the
map g : x — Ex C C™ be the map which sends x to its fiber in C™. It is readily apparent
that gf (vkn) is isomorphic to E.

Conversely, for f € [X,Gryn) and E = f*(ykn) a choice of n-frame for E is implicit
in the pull-back over the tautological bundle for which gg¢ = f. Thus, while the map
ge depends on the embedding E — X x C", we are fine as long as we can show the
homotopy class of the map is well defined. To this end, let hy,h; : E — X x C™ be two
n-frames for the bundle E. Fort € [0,1] and e € E, defineh; : E - C"® C"* = C™
to be hi(e) := (x, (1 —t)Vyx @ twy) where (x,Vyx) = hi(e) and (x,Wyx) = ha(e). It is easy
to check that each h; is an n-frame. Thus E — [ge] € [X, Gry 0] is a well-defined map
from Vect!fg“(X) to [X, Gry onl.

From this it immediately follows that:

Proposition 13.4. For any compact space X there is a bijective correspondence between Vectl (X)
and [X, Gry ool

The gluing construction effectively provides a correspondence between isomorphism
classes of complex k-bundles over X and principal U(k)-bundles over X. Thus, the pre-
vious proposition can thus be restated as there is a bijective correspondence between
isomorphism classes of principal Uyx-bundles and homotopy classes [X, Gry ] obtained
by pulling back the canonical principal U(k)-bundle p : Vi oo — Gri oo-

14. LECTURE 14

In general, for a topological group G, we say that a space BG is a classifying space
for G if there is a principal G-bundle p : EG — BG such that for any compact space X
there is a bijective correspondence between isomorphism classes of principal G-bundles
over X and [X, BG] obtained by pulling back the bundle EG. By previous proposition
we can take Gry o, as BU(k). By work on Milnor, every topological group G admits
a classifying space. The construction is analogous to the familiar bar construction in
homology theory, so is quite unwieldy to work with in practice.

For the infinite unitary group U, we obtain a model of B U by noting there is a natural
map Gry,, — Griy1n41 obtained by summing with a one-dimensional space an this is
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well behaved with respect to the inductive limits giving an inclusion Gry o = Gry41,00-
We define BU to be the inductive limit. Again, by the gluing construction, every prin-
cipal U-bundle over a compact space is represented by a U-valued cocycle on a finite
cover which must reduce to a U(N)-cocycle for some N sufficiently large again by com-
pactness. In other words every principal U-bundle P is of the form P = P’ x ) U for
some principal U(N)-bundle P’ for some N sufficiently large. It is apparent that the
map (X, Grye] — [X, Griy1,00] induced by the inclusion Gry o — Grii1,00 identifies
on the principal bundle side with the map P = P Xy U(k+1). Since im[X, Gry o] =
[X,1im Gry oo] = [X, BU] for any compact space X, this shows that BU is indeed a classi-
fying space for U.

14.1. The Grothendieck Construction. Given A an abelian monoid, we can define an
abelian group K(A) and a homomorphism 14 : A — K(A) such that for any homomor-
phism ¢ : A — B of abelian monoids, there is a homomorphism of abelian groups
K(e@) : K(A) — K(B) such that the following diagram commutes:

The group K(A) can be constructed as follows. Define an equivalence relation ~ on
A x Aby (a1, by) ~ (az,by) if a; + b2 + ¢ = az + by + c for some ¢ € A. This relation is
trivially reflexive and is symmetric by commutativity of the sum. Further if (aj, by) ~
(az,b3) ~ (a3, b3) thena;+by+c+bz3+d=a;+bj+c+b3+d=a3+by+b;+c+d
for some c,d € A, so setting e = b, + ¢ + d we have (aj, b) ~ (a3, b3).

The additive structure on K(A) is [aj, b1] + [a, bs] = [a; + az, b7 + by] which is
straightforward to check is well-defined as associative. The zero class is [a, a] for any
a € A and the inverse class to [a,b] is [b,al. The map 1o : A — K(A) is given by
a — [a,0] where 0 is the identity in A. Finally, if ¢ : A — B is a homomorphism of
abelian monoids, then [a,b] — [@(a), ¢(b)] induces a group homomorphism K(¢) :
K(A) — K(B) which can be easily seen to fit into the commutative diagram above.
Sometimes we write the class [a, b] as the formal difference [a] — [b].

Moreover, suppose that A is equipped with a second associative operation * which
distributes over summation. Then K(A) is equipped with a ring structure by ([a] —[b]) *
([c] =[d]) =laxc]—[a*xdl—[bxc]+[bxdl =[a*xc+bxd —[a*d+bx*c|. Thering
structure is also natural in the sense of fitting into the commutative diagram above.

Exercise 14.1. Show that the Grothendieck construction applied to the non-negative
integers yields the integers.

14.2. Defining K°(X) and IZO(X). There are two natural functors from the category
compact, hausdorff topological spaces to abelian groups defined as terms of Vectc (X).
One is motivated is motivated directly from vector bundles and associated operations
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on them, while the other is motivated more from the homotopy-theoretic perspective
as outline in the previous section. We will begin with the former.

For a compact, hausdorff topological space X, Vectc(X) is an abelian monoid under
direct sum (the 0-dimensional vector bundle is the identity). We thus define K°(X) :=
K(Vectc). More over the tensor product of vector bundles is seen to distribute over
summation, so K°(X) is a ring.

The basic properties of the functor K°(-) naturally follow from operations on vector
bundles. If X and Y are homotopy equivalent, then KO(X) = KO(Y) by the Bundle Ho-
motopy Theorem. We have the KO (pt) = Z as a ring, since all vector bundles are trivial,
so E — dim(E) gives an isomorphism between Vectc(pt) and N U {0} which is com-
patible with summation and the tensor product. If f : X — Y is continuous, then for
E, F € Vectc(Y) we have that f*(E®F) = f*E® f*Fand f*(E®QF) = f*E® f*F, whence the
pullback induces a (unital) ring homomorphism KO(f) : [E] — [F] — [f*E] — [f*F] from
KO(Y) to K°(X), i.e., the functor K° is contravariant.

If we specialize to the inclusion pt — X, this induces a map K°(X) — K°(pt) which, in
the case that X is connected, is independent of the choice of map as every fiber belonging
to a single connected component must have the same dimension. Let us denote this map
€ : K°(X) — Z. Since X has at least one vector bundle in every dimension we have that:

Proposition 14.2. € : KO(X) — Z is a surjective ring homomorphism.

Note that since X is compact, every vector bundle admits a frame, whence for every
bundle E < X x CN, there is the complementary bundle El sothat E @ EL = 1y, the
trivial bundle of dimension N. Thus for any [E] — [F] € K°(X) we have that [E] — [F] =
[E® FL — [Fe FL = [E'] — [1,,]. If X is connected, the kernel of the homomorphism e
can thus be identified with all classes [E] — [1,,] where dim(E) = n. Our first definition

~0
of K (X) is the kernel of € with the inherited ring structure.

~0
Proposition 14.3. € : K°(S") = Z is a ring isomorphism, whence K (S') = 0.

From the cocycle perspective, we have that every complex n-bundle on S' is given
by a clutching map f € [S° U(n)], since U(n) is path connected, it follows that every
complex bundle over S! is trivial, whence the isomorphism.

Of course, we could define the real K-group K (X) by applying the Grothendieck

construction to Vectr(X) and IZ?R(S]) is defined similarly. This is again a ring in the
analogous way. If we compute K%(S'), we can still do so by reducing to clutching
functions, this time in 151[80, O(n)]. Since O(n) has exactly two connected compo-
nents for each n, we have that any clutching function f : S° — O(n) is homotopic to
det(f) : S® — {—1,1}. Whence every nontrivial real vector bundle over S'is isomorphic
to the Mobius bundle. Thus K%(SU = 7Z[x]/(x* — 1) with the natural ring structure.

~0
This gives that K (X) = Z/27Z; however, the product structure is trivial (all products
are zero). This will probably be the last time in these notes that we discuss real K-theory,
so I hope you enjoyed this digression, but not too much.

We now turn to the second approach to defining the K’ functor via homotopy theory.
We say two vector bundles E,F € Vectc(X) are stably equivalent (written E ~; F) if
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E® 1, = F& 1, for some m,n € NU{0}. Note that the vector bundles need not have
the same dimension. There is a natural monoid structure on the stable equivalences
classes defined by [E]s + [Fls := [E @ Fl;. Itis straightforward to check that this operation
is well-defined, commutative, and associative. The class [1]s of the trivial line bundle
is a obviously the unit. We now construct an additive inverse. Let h; : E — X x C™
and h; : E — C" be two frames of the same vector bundle. By extending we have
that hy @ Omaon, O2min @ hy 1 E — X x CP™H2" are two orthogonal frames for E in the
same bundle, so by essentially the same reasoning as in the proof of Proposition 13.3,
we have that hy(E)t @ 1, = (hy ® 0n(E))* = (O @ h2(E))* = 1;n @ ha(E)+, whence
E — hi(E)* is well-defined at the level of stable equivalence classes. Thus for any
splitting E@® F = X x C! we have that [E]s + [Fls = [1{]s, so [Fls = —[E], is a well-defined
inverse, whence stable equivalence classes of vector bundles form an abelian group.

Let’s call the group of stable equivalence classes of complex vector bundles over X by
G(X).

Proposition 14.4. There is an isomorphism of groups © : IZO(X) — G(X) given by 6 : [E] —
[Tn] = [El.

The map Vectc(X) 2 E — [E]s € G(X) is clearly a surjective homomorphism of
monoids, whence induces a surjective homomorphism K%(X) = G(X). Moreover, the
trivial bundles are all sent to the identity in G(X) so this maps factors to a surjective

homomorphism IZO(X) — G(X). We need only show this map is also injective. If E and
F are comlex bundles of respective dimensions m and n, then we have that [E]s = [Fl, if
and only if E@ 1, B 1y = F® 1, 1x for some k, whence by definition of the Grothendieck
construction we have that [E] — [1,,] = [F] — [14].

~0
Exercise 14.5. As we noted before, K (X) inherits a ring structure as an ideal in KO(X).
Write down this ring structure in terms of G(X).

~0
We are now ready to give a characterization of K (X) in terms of homotopy theory.

Proposition 14.6. There is a bijective correspondence between [X, BU] and stable equivalence
classes of complex vector bundles over X.

By Proposition 13.4 there is a bijective correspondence between Vectt: (X) and [X, Gry o).
By the proof of that result is straightforward that the map E +— E @ 1 sending Vect£ (X)
into Vect}é“ (X) corresponds with the induced map [X, Gry o] — [X, Grit1,00] given by
the inclusion Gry o = GI41,00-

In particular [X, BU] has the structure of an abelian group. We conclude this section
by outlining how to construct the group structure internally. Note that we can place an
abelian monoid structure on [X, BU]. First note there is a natural map o : BU x BU —
BU by embedding the first copy into the odd coordinates and the second copy into
the even coordinates. We define a sum for for [f],[g] € [X,BU] by ([f] + [g])(x) =
[u(f(x), g(x))]. Again, it is not too hard to demonstrate that this is operation is well-
defined, commutative, and associative. Given a splitting E @ E+ = X x C", we have for
the maps fg(x) := Ex € Grin and fp(x) = El e Grn_yn that [fg] + [fgo] = [14] giving
the inverse.
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15. LECTURE 15

15.1. Morse Theory. [This lecture was given by Jun Choi]

16. LECTURE 16

16.1. Exact sequences of abelian groups and splittings. In this section all capital Ro-

man letters will denote abelian groups. We say that sequence of homomorphisms

Ao ny, Aq Ly Iy Ay is exact if im(f;) = ker(fi;) foralli = 1,...,n—1. A

homomorphism A L, B is said to be split if there is a homomorphism B % A such that
f o g = idg. The following proposition will be crucial:

Proposition 16.1. Let 0 — A 5B % C = 0bean exact sequence. Then f and g are both
split if and only if B = A @ C. Moreover the same conclusion holds if and only if either f or g
is split.

One direction is trivial. Suppose that s and t split f and g respectively. For b € B
write b = (b — tg(b)) + tg(b) then b — tg(b) € ker(g) = im(f). Moreover, the fact
that g splits implies that g restricted to im(t) is injective, whence im(f) Nim(t) = {0}
by exactness. By exactness at C, t is injective, and exactness at A implies f is injective.
Thus we have that B is generated by the images of two injective maps which have trivial
intersection. Since B is abelian this implies that B = im(f) @ im(t) = A @ C. A similar
argument applies when considering f and its splitting s.

Exercise 16.2. Complete the proof of this proposition.

As an immediate consequence it follows that:
~0
Proposition 16.3. K°(X) =K (X) & Z.

We have that 0 — KO(X) — K9%(X) S Z — 0is exact and the inclusion Ko(pt) — K°(X)
given by the map X — pt provides a splitting for €.

16.2. Computing K°(S?). We will now describe K°(S?) as a ring. First, somewhat con-

~—1
fusingly we write K (X) = K~1(X). The reason for this will become apparent later.
For the moment we just state:

Proposition 16.4. For any compact, hausdorff space X, we have that IZO(SX) and K (X) are
isomorphic as abelian groups.

As we noted earlier we have [SX,BU(k)] < VectE(SX) « [X,U(k)], so by passing to

~0 ~_1
direct limits we have that K (SX) = K (X) as sets. However, it is not too hard to see
that the group operations we defined on [SX, BU] and [X, U] are compatible under this
~0
identification. Note we can use the ring structure on K to define a ring structure on

~—1
K .
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Proposition 16.5. As abelian groups IZO(SZ) = IZ_] (S") = Z and

KOS =Z®Z ={ml]+nlyl : m,yn € Z}
where [1] is the class of the trivial line bundle and [y] is the class of the tautological line bundle
over CP' = S2. Moreover, [B] = [y] — [1] € I~<O(SZ) corresponds with the Bott element
(generator) of K (S").

This follows directly from the splitting K°( §%) = IZO(SZ) @ Z discussed above.

We now describe the ring structure on IZO( $2). It suffices to understand how [y] be-
haves under taking powers. For m € N, let y™ be the line bundle which is m-fold tensor
power of the tautological line bundle y. Since 7 is obtained by clutching over S' by the
map z + z, we have that y™ is obtained by clutching over S! by the map z + z™. We
can extend this definition of y™ to all integers, e.g., y~' corresponds to clutching over
z— z7 !, etc. For y™ @ y™ the clutching function is

zm 0 FALSRLINN()
z (o z“) N ( 0 1>
whence we have the relation [y™] + [y"] = [y™"™] + [1]. Iterating this we see that

mhyl = y" + (m—1)[1] = ™ + (m —1)[1]

holds for all integers.

For a variable x, let Z[x] denote the ring of polynomials in x with coefficients in Z. If
p(x) € Z[x] we write Z[x]/p(x) to be the ring which is the quotient of Z[x] modulo the
ideal generated by p(x).

Proposition 16.6. As a ring we have that K°(S?) = ZIyl/(y — 1)* = ZIB]/B* where the
isomorphisms are given by [y] — vy and [B] — 3, respectively.
This follows easily from the computation
() =012 = WP =2 + 1= 2h] — 1) = 2] + 1 =0.

~0
16.3. The Short Exact Sequence. In this section we begin the work of extending K and

K 'toa generalized cohomology theory with higher (reduced) K-groups K " forall n.
The main goal of this section is to establish:

Proposition 16.7 (Short Exact Sequence). If X is a compact, hausdorff space and A C X is

closed then the sequence A 5 X 4 X/A induces an exact sequence on reduced K-theory
~0 ~0 i, =0
K (X/A) 45 K (X) = K (A).

Clearly the pullback of any bundle over X/A along q is trivial when restricted to A.
As i, is the map induced by restriction to A, this shows that im(q.) C ker(i,). In the

other direction, we will use the description of IZO as stable equivalence classes of vector
bundles. If E is a vector bundle over X with i,[E]s = [E|a]s = [1];, then by replacing E
with E @ Ty for k sufficiently large we can assume without loss of generality that E|A is
a trivial bundle over A. In other words, we can assume that E[p = A x C™ for some n.
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There is an obvious candidate for the preimage class of E under q,, namely the class
of the quotient E/ ~ where (x,V) ~ (y,V) whenever v € C" and x,y € A. The only
sublety is whether there is an open neighborhood of the point A/A in X/A for which
E/ ~ trivializes. However, by Lemma 9.2 we can extend each of the n pointwise linearly
independent sections si, ..., s, : A — A x C" on a common open neighborhood U of A.
Since these section vary continuously there is an open neighborhood V of A contained
in U where the sections remain pointwise linearly independent. These maps reduce to
continuous maps sj,...,s, : V/A — E/ ~ y/a in the obvious way thus provide a local
trivialization for E/ ~ at A/A. Thus E/ ~ is a vector bundle over X/A.

17. LECTURE 17

17.1. The Long Exact Sequence. Given a compact, hausdorff, pointed space (X, xo)
and a closed subspace xo € A C X, we define the relative (reduced) K-theory to be

IZO(X,A) = KO(X/A). Considering the reduced suspension X with the canonical
inclusion ZA C ZIX we have that ZX/XA is homeomorphic to £(X/A). (This is not

quite true for the suspension.) Therefore we have that IN(_] (X,A) = I~<O(ZX, TA) =
~0 ~—1
K (Z(X/A)) =K (X/A). ,
Analogusly, we can define the higher (relative) K-groups by K "(X):=K (Z"X) and
IZ_H(X, A) = IZO(Z“X, IMA) = IZO(Z“(X/A)) for all n € N. Rephrasing the results from
the previous lecture, this means that for each n € N the sequence
K (X A) 5K (X)) 5K (A)

is exact. The main result of this section is that these sequences can be stitched together to
form one infinite exact sequence of K-groups, the “long exact sequence” which should
be familiar from general (co)homology theory.

~_1 ~
Proposition 17.1. Thereisamap 0 : K (A) — KO(X, A) so that the sequence

~_1 ~_

K X)) =K (A) SR XA =K (X
is exact.

The trick to building this map is the very useful one of turning a quotient into an
inclusion via homotopy theory. For a (based) inclusion Y — X of compact, hausdorff,
based spaces we have that X/Y is homotopy equivalent to XU CY where we identify the
base of the cone with the image of Y, yielding a sequence of inclusions

Y — X— XUCY.

In this way we have reimagined the sequence A — X — X/A in a way that we can now
extend indefinitely by applying the operation of “coning off the previous thing” in the
sequence! Thus we have

Y= X9 XUCY—= XUCY)UCX = (XUCY)UCX)U(XUCY) = ---
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and so on. The (k + 2)-nd term in the sequence is thus homotopic the the quotient of
the (k + 1)-st term of the sequence by the k-th term, so the chain of groups we get by

applying the IZO functor to the sequence is exact at each term.
We have that (XUCY)UCX is homotopy equivalent to LY and ((XUCY)UCX)U(XUCY)
is homotopy equivalent to X (note that SX = CX/X).

Exercise 17.2. Draw some pictures to verify this.

Applying these identifications we have an exact sequence
S K(EX) 2 K (ZA) 5 K(X/A) 5 K (X) - K (A),
The map 9 : Izil (A) — IZO(X, A) is idenitfied with the middle map in this sequence.

17.2. Applications of the long exact sequence.

18. LecTURE 18

18.1. Towards Bott Periodicity. Let X be a compact, hausdorff space. From previous
discussion we know that [X,QBU] = [ZX,BU] = [X,U]. The first isomorphism is
just the fact that the loop and reduced suspension functors are adjoint and the second
isomorphism follows from the fact that both homotopy classes describe isomorphism
classes of vector bundles on XX. As a consequence, note that ;1 (BU) = m(QBU) =
m(U) for all k € N. In fact the connection between these two spaces is much deeper.
The goal of this section is to prove the following theorem:

Proposition 18.1. For each k, the spaces U(k) and Q BU(k) are homotopy equivalent.

Since inductive limits commute with the loop functor, this shows that U and QO BU are
also homotopy equivalent.

Before sketching the proof, we discuss a bit of notation and some generalities. We
will say that two topological spaces X and Y are weakly homotopy equivalent if there
isamap f : X — Y which induces a bijection f, : my(X) — m(Y) and isomorphisms
i : m(X) — me(Y) for all k € N. It turns out that if both X and Y have the homotopic
to CW complexes, then weak homotopy equivalence implies homotopy equivalence, so
we will not have much reason to trouble ourselves with the distinction for the purpose
of these notes.

For any topological group G, it can be shown there is a classifying space and a prin-
cipal G-bundle EG — BG with EG contractible. It can also be shown through abstract,
homotopy-theoretic considerations that this implies that G is always weakly homotopy
equivalent to QBG. In fact, as we will see shortly, the map f : G — (OBG can be written
easily. We will use the stucture of BU(k), along with a little linear algebra, to construct
an explicit homotopy inverse to f.

Let (B, bg) be a based space. The path space PB is the space of all continuous maps
f:[0,1] — B with f(0) = by. The path space is naturally a based space with base point

the constant path at by. Let F — E £ B be a fibration of based spaces. This means that
p: (E,e0) — (B,by) is an F-fibration with ey € p~'(by) = F. For any based space B, the
map ev: PB — B givenby ev : f — f(1) is a natural based fibration with F = QB. Given
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such a based fibration with E contractible, our first objective is to create a commutative
diagram of based maps:

F E "B
OB PB -2 B

To do so, since E is contractible, leth : E x [0, 1] — E be a homotopy from the constant
map to ey to the identity map on E. Then x — h(x,t) gives a map E — PE. The map
p : E — B induces a map p, : PE — PB which we can compose with the previous map
to get the middle downward arrow in the diagram. Restricting this map to p(bg) =F
then gives the leftmost downward arrow. Applying this to the classifying space B = BG,
this is the map f: G — QBG.

We will directly check that ths applies to the classifying bundle Vi oo — Gry o =
BU (k) which boils down to showing:

Proposition 18.2. For eack k, Vi « is contractible.

Let C* be the inductive limit of (C™) under the standard inclusions, and let C¢ be
all vectors supported on even coordinates. For each n there is a path of unitaries which
takes the copy of C™ in C*" situated on the first n coordinates to the copy situated on the
even numbered coordinates, preserving the order. Applying inductive limits this yeilds
a homotopy of C* onto C® through orthogonality preserving maps. For each k, this
induces a homotopy from Vi o, to the submanifold Ve, of all orthonormal k-tuples in
C*® by applying the homotopy to each element of a k-tuple. Now given an orthonormal
k-tuple v1, ..., vk € C® we have that t — /1 — tv; + tey;_1 gives a homotopy through
orthonormal k-tuples from {vy,..., vy} to {e1, €3, ..., ex_1} where e; is the ith element
of the canonical orthonormal basis for C*. We can then map this homotopy back into
Viev showing that Vi e, = Vi o is contractible.

In the case that B = BU(k) we now describe how we can reverse the vertical arrows
in the commutative diagram, constructing a homotopy inverse for the map U(k) —
QBU(k).

Proposition 18.3. There is a map v : PB — PE of based spaces so that x — v(p)(1) and its
restriction to QOB make the following diagram commute:

F E 5B
I [
QB PB =5 B

An element p € PB is a path t — V; of k-dimensional subspaces of CN for some N
sufficiently large. The basepoint ey € E is a distinguished (ordered) orthonormal basis
(vi,...,vi) for Vo. Let pr, | be the orthogonal projection from E onto E¢ for s, t € [0, 1].
For every & > 0, there is € > 0 sufficiently small such that whenever [s—t| < e the image
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of any ordered orthonormal basis of Vi under pr_, is 5-close to an ordered orthonormal
basis of V; and we can select such one canorucally via the Gram-Schmidt process. Thus
starting from an ordered orthonormal basis of Vs we can find a continuous path of
orthonormal bases for V; with t < s + €.

This not only shows that we can lift a path p € PB to a path p € PE but we can do so
in a continuous way over PB. (To be sure we are sweeping a lot of small details under
the rug here.) The map p — p(1) € E is the middle arrrow in our diagram. Restricting

to OB, we have that p(1) is another ordered orthonormal basis (wr,...,wy) for V,, but
these are in one-to-one correspondence with elements of U(k) by sending the basis to
the unitary defined by vi — w; foralli=1,...,k.

One can compare the two processes in order to convince oneself that they really do
describe the inverse operations to each other, at least up to homotopy. (Sweep, sweep!)

19. LEeCTURE 19

19.1. Bott Periodicity: Bott’s Proof.

20. LECTURE 20

20.1. Bott Periodicity: Proof of Atiyah—Bott.

21. LECTURE 21
22. LECTURE 22
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