
LECTURE NOTES ON K-THEORY

1. Lecture 1

1.1. Paracompact Spaces. Let X be a topological space. A collection of subsets (Ai)i∈I
is said to be locally finite if for every x ∈ X there is an open neighborhood U such that
U intersects at most finitely many of the Ais nontrivially. A topological space is para-
compact if every open cover admits a locally finite subcover. Clearly compact spaces
are paracompact.

We observe that if (Ai) is locally finite then
⋃
iAi =

⋃
iAi. The following are standard

exercises in point-set topology.

Proposition 1.1. Let X be a topological space.
(1) If X is paracompact and hausdorff (T2), then X is normal (T4).
(2) If X is regular (T3) and second countable, then X is paracompact.
(3) If X is locally compact, second countable, and hausdorff, then X is paracompact and

σ-compact (X is a countable union of compact sets).

A partition of unity for X is a collection of continuous maps {pi : X→ [0, 1]}i∈I such
that the collection of support sets supp(pi) := p−1i (0, 1] is locally finite and

∑
i pi(x) = 1

for all x ∈ X. We will say that a partition of unity is subordinate to a cover of X if each
support set is contained in some element of the cover.

The main reason for requiring paracompactness is captured by the following stan-
dard fact.

Proposition 1.2. A hausdorff topological space is paracompact if and only if every open cover
admits a subordinate partition of unity.

It turns out that everymetrizable space is paracompact (a result of A.H. Stone). How-
ever this requires stronger axioms for set theory than ZF with Determined Choice.

1.2. (Smooth) Manifolds. Our primary examples of (hausdorff) paracompact spaces
will be manifolds. An n-manifold is a topological space which is second countable
and locally homeomorphic to Rn.

1.3. Basic Examples. The most basic examples will be the n-spheres

Sn := {(x0, x1, . . . , xn) ∈ Rn+1 : x20 + x21 + · · ·+ x2n = 1}.

Example 1.3. The n-dimensional real projective space RPn is defined to be the set of
lines through the origin in Rn+1.
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2 LECTURE NOTES ON K-THEORY

Since any line through the origin is described by either of the antipodal points where
it intersect then-sphere, a more familiar way the idenitfyRPn is as the quotient of Sn by
theZ/2Z-actionwhich sends (x0, x1, . . . , xn) to (−x0,−x1, . . . ,−xn). Note thatRP1 ∼= S1.
(Pinch S1 to obtain a bouquet of 2 circles, then twist one a half turn and lay it over the
other.) However RPn and Sn are distinct for n ≥ 2 since π1(Sn) ∼= {1} for n ≥ 2 while
π1(RPn) ∼= Z/2Z.

There is another natural realization of RPn inMn+1(R) as the subset of all matrices P
such that P = Pt = P2 and tr(P) = 1 via the map (x0, x1, . . . , xn) 7→ [xixj]. The fact that
this is onto follows from the spectral theorem for self-adjoint real-valued matrices.

Example 1.4. In general, if M is a manifold (smooth manifold), and G is a group of
homeomorphisms (diffeomorphisms) which acts freely and properly discontinuously,
then the quotientM/G is again amanifold (smoothmanifold). If we drop the asssump-
tion that the group is acting freely, the the resulting quotient is known as an orbifold.

Note that we may view S2n−1 as the complex n-sphere

{(z0, z1, . . . , zn) ∈ Cn : |z0|
2 + |z1|

2 + · · ·+ |zn|
2 = 1}.

This realization leads to awealth of quotient structures on the odd spheresS2n−1 coming
from the action on each coordinate by the complex units. This is in contrast to the even
spheres where the only nontrivial group which can act freely by homeomorphisms is
Z/2Z.

Example 1.5. The n-dimensional complex projective spaceCPn is the space of all com-
plex lines throught the origin in Cn+1.

Similarly to real projective space, CPn is realized as the quotient of the complex
sphere under the relation (z0, z1, . . . , zn) ∼ (λz0, λz1, . . . , λzn), where λ is a complex
unit. For n = 1, there is a bijection from the equivalence classes [z0, z1], z1 6= 0 and C
via [z0, z1] 7→ z0/z1. In this way, CP1 is the one point compactification of C (the Rie-
mann sphere) and the map previously described is the stereographic projection from
the point at infinity.

Example 1.6. Letp, q ∈ N. There is a free action ofZ/pZ on S3, identified as the complex
2-sphere, given by [1](z0, z1) := (e2πi/pz0, e

2πiq/pz1). The quotient of S3 by his action is
known as the lens space L(p,q).

The next examples we will cover are Lie groups, specifically the orthogonal and uni-
tary groups, which will play a central role later.

1.4. Grassmannians.

2. Lecture 2

2.1. Lie Groups. A Lie group G is a group which is also a smooth manifold such that
the map G×G 3 (x, y) 7→ x−1y is smooth.

Given v ∈ TGe, one constructs an associated smooth vector field Xv on G by Xv(g) :=
(Lg)∗v. The map [Xv, Xw](e) then defines a nonassociative algebra structure on TGe
which is known as the Lie algebra associated to G, and is often denoted by g. The
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Lie algebra and the Lie group are essentially two sides of the same coin. For instance,
there is canonical map exp : g → G which is surjective in the case that G is connected
and compact.

We turn our attention to some concrete constructions of Lie groups and their Lie
algebras.

For eachn consided the groupU(n) of unitarymatrices inMn(C), i.e., allA ∈Mn(C)
such that A∗A = I where ∗ is the conjugate transpose. In the real case we have the
group O(n) of orthognal matrices inMn(R), i.e., AtA = I. Note that O(n) embeds as
a closed subgroup of U(n), and the U(n) is realizable inM2n(R) (exercise: write this
down explicitly). Being a unitary or orthogonal matrix is determined by a family of
polynomials in the matrix entries, so it is easy to check that both O(n) and U(n) are
(compact) Lie groups.
Proposition 2.1. U(n) is smoothly path connected.

By the spectral theorem any A ∈ U(n) is of the form exp(iT) for T ∈ Mn(C) self
adjoint (T∗ = T ), in other words A = exp(T ′) where (T ′)∗ = −T ′. It is easy to see
that the set of these "skew-adjoint" operators is an nonassociative algebra under the
commutator [S, T ] = ST − TS. This is, in fact, the Lie algebra u(n) of U(n) and the map
exp : u(n) → U(n) is just normal exponentiation of matrices.

This shows that for all A = exp(iT), there is a smooth path to the indentity given by
the one-parameter subgroup At := exp(itT) for t ∈ R. It follows that U(n) is smoothly
path connected (exercise).

(Un)fortunately, this is not true forO(n), since ifA ∈ O(n), det(A) ∈ {−1, 1}, so there
can be no continuous path inO(n) connecting to elements with different determinants.
However, this is the only obstruction. Let SO(n) be the special othogonal group, the
closed subgroup of all orthogonal transformations with determinant 1.
Proposition 2.2. SO(n) is smoothly path connected.

Most of this is left as an exercise. To begin, embed O(n) in U(n) as the subgroup
of all unitaries preserving the canonical real structure onMn(C). Let A = exp(T ′) for
some T ′ ∈ Mn(C) Since det(A) = exp(tr(T ′)), we can assume tr(T ′) = 0, and a little
algebra shows that T ′ realized in the natural way as a matrix inM2n(R) is of the form
T ⊕ T for some T ∈Mn(R)with T t = −T . Thus A = exp(T) inMn(R). The rest follows
in the same way as smooth path connectivity for U(n). Note that this shows that the
set of all matrices of determinant −1 is also smoothly path connected.

Note that this shows the Lie algebra so(n) is just the skew-symmetric real n × n
matrices where the product is the commutator.

2.2. Homeomorphisms of Spheres. Let Sn be the n-sphere. The antipode map is the
map α : (x0, x1, . . . , xn) → (−x0,−x1, . . . ,−xn), and the canonical reflection is the map
ρ : (x0, x1, . . . , xn) = (−x0, x1, . . . , xn).
Proposition 2.3. If n is odd then α is homotopic to id. If n is even, then α is homotopic to ρ.

To see this, note thatO(n) is the also the set of all Sn preserving linear isomorphisms.
Clearly, both α and ρ are restrictions of elements inO(n) to the sphere, so we will treat
them unambiguously as such. If n is odd, then det(α) = 1, which means there is a path
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in SO(n) connecting α to the identity. This furnishes the required homotopy in the
natural way. In the case that n is even, det(α) = −1 = det(ρ) and the same reasoning
applies.

Proposition 2.4. Let ρ : Sn → Sn be the reflection . Then ρ is not homotopic to the identity.

With a little singular homology theory, the proof is pretty short. It is not so hard to
check the that induced homomorphism ρ∗ : Hn(S

n;Z) → Hn(S
n;Z) ∼= Z on the n-th

homology groups is the map which sends z to −z. See (Hatcher, Algebraic Topology,
p. 134). Other the other hand, as you probably guessed, id∗ is the identity homomor-
phism. Homotopic maps induce identical homomorphisms on homology groups.

3. Lecture 3

3.1. Defining Vector Bundles. Let B be a topological space. A real n-vector bundle
overB is a pair (E, ξ) consisting of a topological space E and a continuousmap ξ : E→ B
satisfying:

• for each b ∈ B, ξ−1(b) has the structure of a finite-dimensional real vector space.
• for eachb ∈ B there is a neighborhoodU ⊂ B such that ξ−1(U) is homeomorphic
to U× Rn in a way which respects the linear structure on the fibers.

The space B is referred to as the base space, E is the total space of the bundle, and
ξ−1(b) is the fiber over b. The second condition on (E, ξ) is referred to as local triviality,
and is crucial for at least two reasons. First, the idea of a vector bundle should capture
the notion of a “continuously varying field of vector spaces” over B, so we want to rule
out things such as E = B̂×Rn being a vector bundle over Bwhere B̂ is B given the dis-
crete topology. Second, we would like to use vector bundles to build global invariants
of the topological space B, so we should exclude the possibility of any interesting local
structure. We will say that (E, ξ) is an n-bundle if each fiber has dimension n.

Analogously, one can talk about complex vector bundles over B. We now describe
the category Vectk(B) of k-vector bundles over B where k is either R or C. The objects
are in place, so let’s turn to the morphisms.

A morphism of bundles f : (E, ξ) → (E ′, ξ ′) is a continuous map such that the re-
strictions fb : ξ−1(b) → (ξ ′)−1(b) are linear for all b ∈ B. The map f is an isomorphim
if an inverse exists and is also a morphism. A subspace F ⊂ E is a subbundle of (E, ξ)
if the restriction (F, ξ|F) is a vector bundle.

The following observation is extremely useful.

Proposition 3.1. Let f : (E, ξ) → (E ′, ξ ′) be a morphism of vector bundles. Then f is an
isomorphism if fb is an isomorphism for each fiber.

Pick b ∈ B and let U,V be neighborhoods of b over which E and E ′ are trivialized.
Thus locally f is represented by a continuousmap f̃ : U∩f−1(V)×Rn → U∩f−1(V)×Rn.
Define a map g : U∩ f−1(V) → GLn(k) by sending x to the invertible transformation f̃x.
It is clear that g is continuous, whence by Cramer’s rule, for instance, g−1(x) := (f̃x)

−1 is
also continuous. This locally defines an inversemorphism for f. These local inverses can
be seen to agree on the overlaps, so they can be “glued” together to form a global inverse
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morphism. We will say more about this in a later discussion on “gluing” constructions
for vector bundles.

The proof of this proposition is more subtle than it first seems, but working over the
local trivialization is necessary, since replacing the topology on E with the one given
locally by B̂× Rn, for instance, makes the statement of the theorem false.

Example 3.2. There are always trivial bundles B× Rn.

Example 3.3. IfM ⊂ RN is a smooth n-manifold, then TM and T∗M are vector bundles
over overM. If f :M→M is a smooth map, then f∗ : TM→ TM and f∗ : T∗M→ T∗M
are morphisms.

We see that the projection mapM×RN →M restricted to TM has fibers isomorphic
with Rn. For a system of local coordinates (Uα, hα), the maps

Uα × Rn 3 (u,
∑

ai
∂

∂xi
) 7→ (hα(u),

∑
ai
∂hα

∂xi
(u))

provide a local trivializations forM by the inverse function theorem. A similar argu-
ment works for T∗M.

Example 3.4. ForRPn there is the canonical line bundle (E1n, γ1n) consisting of all (L,~v) ∈
RPn × Rn+1 with ~v ∈ L. There is the analogous line bundle for CPn.

Example 3.5. For the real GrassmannianGk(n) there is a generalization of the canonical
line bundle (Ekn, γkn) given by all (V, v) with ~v ∈ V .

3.2. Sections of Vector Bundles. For (E, ξ) ∈ Vectk(B), a continuous map s : B → E

is a section if ξ(s(b)) = b (i.e., s(b) ∈ ξ−1(b)) for all b ∈ B. We can think of sections
as a continuously varying family of vectors over B. We let Γ(E, ξ) denote the family of
sections of (E, ξ). We will often shorten this to Γ(E) when the map ξ is implicit. Note
that there is a linear structure on Γ(E, ξ)via fiberwise addition and scalarmultiplication.
If E is the tangent bundle overM, then an element s ∈ Γ(TM) is often referred to as a
vector field.

The next result is extremely important. Basically, it states that a vector bundle is
trivial exactly when there exists a global basis.

Proposition 3.6. An n-bundle (E, ξ) is isomorphic to the trivial n-bundle B×Rn if and only
if there exist exactly n sections s1, . . . , sn ∈ Γ(E, ξ) such that {s1(b), . . . , sn(b)} span ξ−1(b)
for all b ∈ B.

Clearly, the existence of such a family of sections is invariant under isomorphism,
and such a family exists for a trivial n-bundle. (Let (ei) be the canonical basis for Rn,
then define si(b) := (b, ei) ∈ B×Rn.) On the other hand, the map f : B×Rn → E given
by f : (b,

∑
αiei) 7→ ∑

αisi(b), again the right sum is understood to be the sum within
the fiber, is a well-defined morphism of bundles which is a fiberwise isomorphism.
Whence, by Proposition 3.1, f is an isomorphism of bundles.
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4. Lecture 4

4.1. Classifying Vector Bundles: First Results. The goal of this section will be to work
through some basic examples, distinguishing trivial from nontrivial bundles. We begin
with TSn, the tangent bundle to the n-spheres.

Example 4.1. TS1 is trivial.
This is easy to see as s(cos(θ), sin(θ)) = (− sin(θ), cos(θ)) is a nowhere zero section

of a line bundle, so Proposition 3.6 applies.
To introduce a bit of notation, we say that a smooth manifoldM is parallelizable if

TM is isomorphic to the trivial n-bundle.

Example 4.2. TS2 is nontrivial. The tangent bundle to any even-dimensional sphere
TS2n is nontrivial.

Suppose that s1, . . . , sn ∈ Γ(TSn) give a trivialization of TSn. In particular, each si is
nowhere zero. The map si(x) 7→ ‖si(x)‖, where ‖ · ‖ is the euclidean norm on Rn+1, is
seen to be continuous, whence ṡi(x) = si(x)

‖si(x)‖ is also continuous. Thus ṡi(x) ∈ Sn and
ṡi(x) ⊥ x. We now observe:
Proposition 4.3. If there is a continous map v : Sn → Sn such that v(x) ⊥ x for all x ∈ Sn,
then the antpodal map is homotopic to the identity.

The required homotopy is given by ht(x) := cos(πt)x + sin(πt)v(x) for t ∈ [0, 1].
For S1 note that this homotopy just rotates the circle through π radians. Since we have
shown in Lecture 2 that the antipodal map is not homotopic to the identity in even
dimensions, we have shown by contradiction that TS2n is not trivializable. In fact, we
have shown much more:
Proposition 4.4. There is no vector field s ∈ Γ(TS2n) which is everywhere nonzero.
This result is colloquially known as the “Hairy Ball Theorem”.

With TS1 and TS2n squared away for the moment, we turn to the tangent bundles of
higher dimensional odd spheres. Classification here becomesmuchmore nuanced. We
first observe that TS2n−1 always admits a nowhere zero vector field given by

s(x0, x1, . . . , x2n−1) = (−x1, x0,−x3, x2, . . . ,−x2n−1, x2n−2).

Example 4.5. TS3 is parallelizable.

To see that TS3 is parallelizable, we will explicitly construct a global basis. To do so,
identifyR4 with the quaternionsH, sending the standard orthonomal basis to {1, i, j, k}.
This isometrically identifies the euclidean norm with the modulus. The units in H are
thus canonically identified with S3. Since (right) multiplication by a unit leaves the
modulus unchanged, we can view right multiplication by a unit as an orthogonal trans-
formation of R4 (hint: use the polarization identity for inner products). Thus for any
z ∈ S3, {z, iz, jz, zk} is again an orthonormal basis. Thus sε(z) := εz for ε ∈ {i, j, k}

defines a family of three fiberwise linearly independent sections of TS3 as sε(z) ⊥ z for
all z ∈ S3. Hence, TS3 is isomorphic to the trivial 3-bundle over S3. It is an exercise to
write these sections in terms of coordinates in R4.
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Example 4.6. TS7 is parallelizable.
This follows in more or less the same way as for TS3 using the division algebra struc-

ture on the octonions O. We have thus exhausted all real division algebras, and in fact
all parallelizable spheres! We will see later that the two are very much related.
Example 4.7. The n-torus Tn is the n-fold direct product of S1. The coordinate embed-
dings smoothly realize Tn in R2n. Tn is parallelizable.

The tangent bundle TTn is isomorphic in the obvious way to the n-fold product of
the bundles TS1, each of which is trivializable.
Example 4.8. Let Σg be a compact orientable surface of genus g. Then Σg is not paral-
lelizable unless g = 1, i.e., the euler characteristic χ(Σg) = 2− 2g = 0.

This is a nontrivial result. Let s ∈ Γ(TΣg) be a vector fieldwith (finitelymany) isolated
zeroes. Let x ∈ Σg be a pointwhere a zero occurs. Pick a small closed disc around x (one
that lies inside a chart in some atlas) on which no other zero occurs. By normalizing s
on ∂D ∼= S1, we obtain a continuous map gx : S1 → S1 known as the gauss map. We
define the index indx(s) of the vector field at x to be the winding number of the gauss
map gx. (In higher dimensions this is the element in Z ∼= Hom(Z,Z) given by (gx)∗ :
Hn(S

n;Z) → Hn(S
n;Z).) The Poincaré–Hopf theorem states that

∑
x indx(s) = χ(Σg)

where the sum is understood to be over all zeroes of the vector field. With a little more
work, this implies that there is no everywhere nonzero vector field on any compact
orientable surface with nonzero euler characteristic.
Example 4.9. A Lie group G is parallelizable.

Pick a basis v1, . . . , vn ∈ TGe. Define vector fields si(g) := (Lg)∗vi for i = 1, . . . , n.
Note that (Lg−1)∗ ◦ (Lg)∗ = (Le)∗ = idTGe , from which it follows that s1, . . . , sn form a
global basis for TG.

As a consequence, no even-dimensional sphere can be given the structure of a Lie
group. In fact, S1 and S3 are the only spheres which admit a Lie group structure. We
have that S1 ∼= U(1) and S3 ∼= SU(2) since an element A ∈ U(2) with det(A) = 1 is of

the form A =

(
α β
−β̄ ᾱ

)
with |α|2 + |β|2 = 1.

Example 4.10. Take the quotient of [−1, 1]×R given by the identification (1, t) ∼ (−1,−t).
This produces a line bundle (E, µ) over S1 known as theMöbius bundle.
Proposition 4.11. The Möbius bundle on S1 ∼= RP1 is isomorphic to the canonical line bundle
γ1.

Define a map Θ : [−1, 1] × R → E1 as follows. If x ∈ [0, 1] map (x, t) 7→ (eiπt, teiπt),
and if x ∈ [−1, 0], map (x, t) 7→ (eiπt, teiπt). This passes to a bundle isomorphism
θ : (E, µ) → (E1, γ1). Note we are identifying R2 and C without any attendant shame.

Similarly, the canonical line bundle γ1n on RPn can be seen as the quotient of the
trivial bundle line bundle on Sn by (x, t) ∼ (−x,−t). Realizing the trivial line bundle
as the normal bundle NSn by (x, t) 7→ (x, tx) gives γ1n as the quotient of NSn under
(x, tx) ∼ (−x, tx). It is easy to see that the quotient of NSn under (x, tx) ∼ (−x,−tx)
gives the trivial line bundle on RPn.



8 LECTURE NOTES ON K-THEORY

Proposition 4.12. For each n, the canonical line bundle (E1n, γ1n) is not trivializable.

For line bundles trivializabilty is equivalent to the existence of a nowhere zero sec-
tion. Let s ∈ Γ(γ1n) be a section. Precomposing with the quotient map Sn → RPn, we
have a maps s̃ : Sn → E1n, so s̃(x) = (x, t(x)x) for some continuous map t : Sn → R.
Since s̃ facotrs through RPn we have

s̃(−x) = (−x, t(−x) · (−x)) = (−x,−t(−x)x) = (x, t(x)x) = s̃(x)

so t(−x) = −t(x). Every continuous, odd function on the sphere must achieve zero
somewhere by the intermediate value theorem,whenceγ1n admits no everywhere nonzero
section.

5. Lecture 5

5.1. Subbundles of Trivial Bundles and Frames. Before discussing abstract construc-
tions (direct sums, (alternating) tensor products, etc.) over vector bundles, we pause to
look at the more concrete notions of sum and complementation when two bundles are
sitting within the common “frame” of a larger, trivial bundle.

Let (E, ξ) ∈ VectR(B) be a subbundle of the trivial bundle B × RN. We will say that
(E, ξ) is complemented in B×RN by the subbundle (F, η) if the fibers of F at each point
is the orthogonal complement of the fiber of E, i.e., Fb = E⊥b for all b ∈ B. We will say
that (E, ξ) and (F, η) form an internal direct sum decomposition of B × RN if E and F
fiberwise span RN.

In fact any subset any F ⊂ B × RN which complements a subbundle in this way is
automatically a subbundle.

Proposition 5.1. Let E ⊂ B × RN be a subbundle. Setting E⊥ to be the fiberwise orthogonal
complement of E, then E⊥ is also a subbundle.

Let Pb be the orthogonal projection from RN onto Eb. Since E is a subbundle, the
map B 3 b 7→ Pb ∈ Hom(RN,RN) is continuous, whence for any b ∈ B there is an
open neighborhoodU and a continuous mapϕ : U→ GLN(R) such that Px = ϕ−1

x Pbϕx
for all x ∈ U. In fact, one can take ϕ : U → O(N), without loss of generality. The
map ψ(x) := ϕ(x)Pb gives a fiberwise linear homeomorphismU×Rn ∼= E|U×RN where
n = dim(Pb). Likewise ψ⊥(x) := ϕ(x)P⊥b gives a fiberwise linear homeomorphism
U× RN−n ∼= E⊥|U×RN which shows that E⊥ is also a subbundle.

Proposition 5.2. If E and F are subbundles of B × RN which form an internal direct sum
decomposition, then F is isomorphic to E⊥.

By the Gram-Schmidt process there is a continuous map ϕ : B→ GLN(R) so that ϕb
maps Fb isomorphically onto E⊥b .

Example 5.3. For a smooth manifoldM ⊂ RN, the tangent and normal bundles com-
plement each other inM× RN.
Example 5.4. The map θ defined immediately after Proposition 4.11 and a copy of it
given by rotating the circle π/2 radians give two complemented copies of the Möbius
bundle in S1 × R2.



LECTURE NOTES ON K-THEORY 9

Example 5.5. Generalizing the previous example, The quotient of Sn × Rn under the
relation (x, v) ∼ (−x,−v) decomposed as an internal direct sum of n + 1 copies of the
canonical line bundle γ1n. It way also be seen to decompose as the sum of the tangent
and normal bundles over RPn.

Given a bundle (E, ξ) ∈ VectR(B) a frame is an embedding of E into a trivial bundle
B×RN. There is an alternate description on frames given by essentially by the proof of
Proposition 3.6

Proposition 5.6. A vector bundle (E, ξ) embeds in B × RN if and only if there are sections
s1, . . . , sN ∈ Γ(E, ξ) such that {s1(b), . . . , sN(b)} spanes the fiber at b for all b ∈ B.

Proposition 5.7. If B is compact, then every vector bundle over B admits a frame.

Let (E, ξ) ∈ VectR(B). Since B is compact, we can pick a finite collection (Ui, ϕi)
n
i=1

of local trivializations ϕi : EUi
→ Ui × Rm of (E, ξ) along with a subordinate partition

of unity {p1, . . . , pn} (we can repeat elements of the cover to so that the indices match).
We define maps ϕ̃i : E→ B×Rm by ϕ̃i(x) = (x, pi(x)ϕi(x)) if x ∈ Ui and ϕ̃i(x) = (x, 0)
otherwise. One can check that the image ϕ̃ := ×ni=1ϕ̃i : E → B × Rmn is a subbundle
and that ϕ is an isomorphism of Ewith its image.

Exercise 5.8. The Möbius bundle admits two local trivializations on the open sets ob-
tained by removing the north or south pole of S1. Use this to construct an explicit frame
embedding for the Möbius bundle in S1 × R2.

6. Lecture 6

We conclude with a few remarks expanding on what is implicit in the constructions
above. To set some notation, let Proj(RN) ⊂ Hom(RN,RN) ∼= MN(R) be the set of all
orthogonal projections. First,

Proposition 6.1. There is a bijective correspondence between n-subbundles of B × RN and
continuous maps f : B→ Proj(RN) where the image of each point has rank n.

For a subbundle E ⊂ B × RN the map is obtained by mapping b to the orthogonal
projection onto its fiber. In the reverse direction, consider the subset Ef := {(b, v) :
fb(v) = v}. For each b ∈ B there is an open neighborhood U so that for all x ∈ U,
fx and fb are sufficiently close orthogonal projections, thus there is a canonical ϕx ∈
GLN(R) which conjugates the two, fx = ϕ−1

x fbϕx and varies continuously in x. Thus
identifying Rn with the fiber at b, ϕ̃ : U × Rn → Ef|U given by ϕ̃(x, v) := (x,ϕxv) is a
local trivialization. Thus Ef is a subbundle.

This observation can be rephrased slightly:

Proposition 6.2. For a compact spaceB, there is a bijective correspondence between subbundles
of B× RN and elements p ∈MN(CR(B)) satisfying p = pt = p2, where CR(B) is the ring of
continuous real-valued funcitons on B.

This follows by the algebra isomorphismMN(CR(B)) ∼= C(X,MN(R))where C(X, Y)
denotes the space of continuous maps from X to Y.
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The set ENn of all n-subbundles of B× RN can be topologized by, for instance, taking
the supremum of the hausdorff distances between unit balls in the fibers of the bundles
over all points b ∈ B. There are many other ways to describe this topology such as by
the subspace topology on the contiuous maps in C(B,MN(R)) whose image lies in the
rank n projections.

Proposition 6.3. Let B be compact. For any E ∈ ENn there is an open neighborhood U such that
E is isomorphic to F for all F ∈ U.

In particular this implies that all vector bundles belonging to any single connected
component of ENn are in the same isomorphism class. However, N may not be suffi-
ciently large relative to n for the converse to hold, i.e., vector bundles in two distinct
connected components may be isomorphic. We will discuss these issues in detail later.
The point here is that while it seems like there is a vast continuum of subbundles of a
trivial bundle, they actually come in discretely many flavors. This is the first indication
as to why the study of vector bundles belongs in the realm of algebraic topology and
homotopy theory.

To seewhy this holds, note that if F is ann-subbundle sufficiently close toE, then their
unit balls in each of the fibers are uniformly close. This means there is some neighbor-
hood V of the identity in GLN(R) and a continuous map f : B→ V such that fbEb = Fb
for all b ∈ B, whence E and F are isomorphic.

6.1. Inner Products. While not every vector bundle over a paracompact space admits
a frame, we have, in a sense, the next best thing.

For a vector bundle (E, ξ) ∈ Vectk(B), define E×B E := {(x, y) ∈ E× E : ξ(x) = ξ(y)}.
The projection map ξ̃ : E ×B E → B is the restriction of ξ × ξ. An inner product for
(E, ξ) is a map 〈·, ·〉 : E×B E→ k which restricts to a nondegenerate inner product over
each fiber.

Proposition 6.4. If B is paracompact, then any vector bundle over B admits an inner product.

Let {(Ui, ϕi)}i∈I be a local trivialization for (E, ξ) which is locally finite. Pick a parti-
tion of unity {pi}i∈I subordinate to this cover with supp(pi) ⊂ Ui. (By repeating an ele-
ment of the cover multiple times we can assume the cover and partition are indexed by
the same set.) The trivial bundleUi×kn admits an inner product 〈·, ·〉(x, v,w) := 〈v,w〉.
This defines an inner product 〈·, ·〉i on E|Ui

by precomposition withϕi. We can then de-
fine a inner product on E by

〈·, ·〉 :=
∑
i∈I
〈·, ·〉i (pi ◦ ξ̃).

7. Lecture 7

7.1. The Gluing Construction and Cocycles. Let (E, ξ) ∈ Vectk(B) be a vector bundle
with fixed local trivialization {(Ui, ϕi)}i∈I. The maps ϕi ◦ ϕ−1

j : (Ui ∩ Uj) × kn →
(Ui ∩Uj)× kn define maps gij : Ui ∩Uj → GLn(k) by

ϕi ◦ϕ−1
j (x, v) = (x, gij(x)v).
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By this identity, the maps gij satisfy the identity
gijgjk = gik

when restricted to the common domain Ui ∩Uj ∩Uk.
For a topological space B equipped with an open covering {Ui}i∈I, we will call any

such set of maps gij : Ui ∩Uj → GLn(k) a cocycle over B. You are probably wondering
at this moment whether every cocycle comes in a natural way from a vector bundle over
B: the answer is ‘yes.’

Proposition 7.1 (Gluing Construction). For every cocycle {{Ui}, {gij}} overB there is a vector
bundle (E, ξ) with local trivializations {(Ui, ϕi)} such that gij = ϕi ◦ϕ−1

j |Ui∩Uj
for all i, j ∈ I.

Let X :=
∐
i∈IUi so that F :=

∐
i∈IUi × kn is a trivial bundle over X with projection

map π. Define an equivalence relation on F by (x, v) ∼ (x, gij(x)v) for (x, v) ∈ Uj × kn
and (x, gij(x)v) ∈ Ui×kn. Writing E := F/ ∼, then π descends to a projection π∼ : E→ B.
We see that (E, π∼) is a vector bundle, since the local trivializations (Ui, ϕi) are just the
liftings of Ui over the quotient. From this it is automatic that ϕi ◦ϕ−1

j = gij!
The gluing construction is the “adjoint” of the map which sends a vector bundle

(with a specific local trivialization) to its associated cocycle. To be precise:

Proposition 7.2. let (E, ξ) be a vector bundle, with local trivialization {(Ui, ϕi)} with associ-
ated cocycle gij. Let (Ẽ, ξ̃) be the vector bundle obtained from gij via the gluing construction.
Then E and Ẽ are isomorphic.

To see this, note that literally by construction to total map

(
∐

ϕi)∼ : E→ ∐
(Ui × kn) → Ẽ

is well-defined and a linear isomorphism on each fiber, thus is an isomorphism.
Note that if we have two cocycles {{Ui}, {gij}} and {{Vi}, {hij}}, by taking the common

refinement of the two open covers, and restriciting the maps appropriately, we may
assume that both cocycles are defined over a common open cover of B.

The main question then becomes, “Given two cocycles gij and hij over a common
open cover {Ui} of B, how can we tell whether the associated vector bundles are iso-
morphic?” We say that a cocycle is trivial if there are maps λi : Ui → GLn(k) so that
gij = λiλ

−1
j |Ui∩Uj

. More generally, wewill say that the cocycles gij andhij are equivalent
or cohomologous if gij = λihijλ−1j for maps λi as before.

Proposition 7.3. If {{Ui}, {gij}} and {{Ui}, {hij}} are cocycles over B, then they are equivalent if
and only if the induced vector bundles are equivalent. To put it another way, two vector bundles
are isomorphic if and only if they have equivalent cocycles over some (any) common locally
trivializing cover.

Let (E, ξ), (F, η) ∈ Vectk(B) and choose a common locally trivializing cover {Ui}i∈I
with respective local trivializations {(Ui, ϕi)} and {(Ui, ψi)}. Suppose we have an iso-
morphism f : E→ F. Then the map

Ui × kn
ϕ−1

i−−→ E|Ui

f−→ F|Ui

ψi−→ Ui × kn
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is a fiberwise isomorphism, whence induces a map λi : Ui → GLn(k). It is easy to
check that gEij = λig

F
ijλ

−1
j . Conversely, suppose that gEij and gFij are equivalent so that

gEij = λ
−1
i g

F
ijλj. Define a map σ :

∐
(Ui × kn) → ∐

(Ui × kn) by

σ : Ui × kn 3 (x, v) 7→ (x, λi(x)v) ∈ Ui × kn.
The σ descends to a well-defined, fiberwise isomorphic map σ∼ :

∐
(Ui × kn)/ ∼ gEij →∐

(Ui×kn)/ ∼ gFij. As previously discussed these two bundles are isomorphic to E and
F respectively; thus, E and F are isomorphic.

By way of an example, let {U1, U2} be the open cover of S1 the the open sets ob-
tained by removing the second and fourth quarters of the circle, respectively. Then
U1 ∩ U2 = (0, π/2) ∪ (π, 3π/2). Since this set is the union of two connected sets, up to
equivalence, any cocycle g12 : U1 ∩ U2 → GL1(R) assigns a value of either 1 or −1 to
each interval. If the signs are the same, then the bundle is trivial. In the case (−1,−1)
the gluing construction creates a “strip with two twists.” If the signs are opposite, then
the associated bundle is the Möbius bundle.

8. Lecture 8

8.1. Sums, Tensors, and Other Categorical Constructions. We know that there are
many categorical constructions for vector spaces – direct sums, tensor products, dual
spaces, conjugate spaces, alternating tensor products, etc. Thinking of all k-vector
spaces as Vectk(pt) (“pt” denotes – you guessed it – the one point space) we wish to
extend these constructions to Vectk(B) for B an arbitrary topological space. Of course,
if we wanted to take, say, the dual bundle (E∗, ξ∗) to (E, ξ), then it is logical that fiber-
wise this should be E∗ =

⋃
x∈B(Ex)

∗. The tricky issue is exactly what topology to assign
to give a natural bundle structure. Again, by way of example, if f : E→ Fwas a bundle
morphism, then the dual map f∗ : F∗ → E∗ defined fiberwise should again be a bundle
morphism. The goal here is to show that the gluing construction provides a correct and
unifying framework for understanding these constructions.

Let τ be a (perhaps contravariant) functor from Vectk(pt) to Vectk ′(pt). We will say
that τ is continuous if f 7→ τ(f) is continuous from Hom(V,W) to Hom(τ(V), τ(W)) (or
Hom(τ(W), τ(V)) in the contravariant case). For a vector bundle (E, ξ), let {{Ui}, {gij}} be
a cocycle forwhich the gluing construction yields an isomorphic copy of (E, ξ). The vec-
tor bundle (τ(E), τ(ξ)) is then given by

∐
(Ui×τ(kn))/ ∼ τ(gij), i.e., the bundle induced

by the cocycle τ(gij) which is still continuous since τ is continuous. This construction
preserves the relation of triviality and two cocycles with a common refinement yield
isomorphic constructions, from which it follows that this construction is well-defined
up to isomorphism. Moreover, if f : E → F is a bundle morphism, then the fiberwise
defined map τ(f) : τ(E) → τ(F) (or τ(f) : τ(F) → τ(E) in the contravariant case) is by
construction a bundle map.

Here are some examples:
(1) the dual bundle E∗.
(2) the complexification EC of a real bundle E.
(3) the conjugate bundleE of a complex bundle. As a reminder the conjugate vector

space V has the same additive structure as V , but λv = λ̄ · v̄.
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(4) the k-alternating tensor power
∧k E.

Direct sums and tensor products are handled similarly. For (E, ξ), (F, η) ∈ Vectk(B),
the direct sum or Whitney sum (E ⊕ F, ξ ⊕ η) is given by taking the direct sum of
associate cocycles over a common open cover, i.e., gE⊕Fij = gEij ⊕ gFij. The tensor product
is given by the cocycle gE⊗Fij = gEij ⊗ gFij.

Example 8.1. For (E, ξ), (F, η) ∈ Vectk(B), the bundle Hom(E, F) can be identified with
E∗ ⊗ F.

Exercise 8.2. Show that if E ∈ VectR(B) is a line bundle, then E ⊗ E ∼= B × R and if
E ∈ VectC(B) then E⊗ E ∼= B× C.

8.2. Pullbacks. An easy way to construct a vector bundle over a space is to borrow
(or steal) one from another space. As we will see later, the Grassmannians will be
particularly generous benefactors. Given topological spaces B,A, a continuous map
f : B → A, and a vector bundle (E, ξ) ∈ Vectk(A), the pullback of (E, ξ) along f, de-
noted as (f∗E, f∗ξ), is the vector bundle fitting into the following commutative diagram:

f∗E −−−−→ E

f∗ξ

y ξ

y
B

f−−−−→ A

Such an object can be constructed quite naturally as f∗E = {(x, b) ∈ E × B : ξ(x) =
f(b)}. Themap f∗ξ is just the restriction of the projectionπB : E×B→ B and the topmap
is the restriction of πE. Why is this a vector bundle? Picking a cocycle {{Ui}, {gij}} repre-
senting E, then f∗E can be identified with the bundle given by the cocycle {{f−1Ui}, {gij ◦
f}}.

Exercise 8.3. For B ⊂ A, the restriction E|B of a vector bundle E ∈ Vectk(A) can be
identified with the pullback of E along the canonical inclusion B ↪→ A.

Exercise 8.4. For (E, ξ), (F, η) ∈ Vectk(B) show that E⊕ F ∼= ξ∗F ∼= η∗E.

Exercise 8.5. Show that the pullback of the Möbius bundle over the map f(θ) = 2θ

yields the trivial line bundle over S1. Hint: pick a cocycle for the Möbius bundle and
compute the new cocycle on S1 under the pullback.

9. Lecture 9

9.1. Structure Groups. Let G be a topological group. Suppose for a space B admitting
some open cover {Ui} we have a set of continuous maps gij : Ui ∩ Uj → G satisfying
the cocycle condition gij(x)gjk(x) = gik(x) for all x ∈ Ui ∩ Uj ∩ Uk. We will then say
that G is the structure group of the cocycle {gij}. So to rephrase things slightly (and
to sweep a few details under the carpet until later) we can think of a vector bundle as
cocycle with structure group GLn(k). Since, working over GLn(k) can be unwieldy in
may situations, we would like to replace any GLn(k)-valued cocycle with an equivalent
one in a smaller, more manageable group. It turns out that we can always do so:
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Proposition 9.1. Any real (resp., complex) vector bundle (E, ξ) over a paracompact space B
admits a cocycle with structure group O(n) (resp., U(n)).

By Proposition 6.4 there is an inner product on E. Let {Ui} be a cover over which
there is a local trivialization for E. For the local trivialization on Ui this inner product
induces an inner product 〈· , ·〉x on kn for each x ∈ Ui, whence 〈· , ·〉x = 〈Ax· , ·〉 for
some nondegenerate positive definite matrix Ax depending continuously on x. Setting
λi(x) = A

1/2
x we see that λigijλ−1j fiberwise preserves the standard inner prodict on kn.

Thus gij is equivalent to a cocycle with structure group O(n) in the real case and U(n)
in the complex case.

9.2. The Bundle Homotopy Theorem. We have seen in Lecture 6 that if two n-vector
bundles E, F ⊂ B×kN belonging to the same path component in the the the space of all
n-subbundles of B×kN, then E and F are isomorphic. The Bundle Homotopy Theorem
is a generalization of this result. Before stating it, we give a preliminary lemma.
Lemma 9.2. Let B be a paracompact, hausdorff space and A ⊂ B be closed. If (E, ξ) ∈
Vectk(B), then any section s ∈ Γ(E|A) extends to a section s̃ ∈ Γ(E).

Pick a cover {Ui} of B by local trivializations of E. Then s|A∩Ui
can be viewed as a

vector-valued map onA∩Ui, whence by the Tietze extension theorem (recall paracom-
pact spaces are normal) extends to a section s̃i ∈ Γ(E|Ui

). Choosing a partition of unity
{pi} subordinate to the cover, we can then define s̃(x) :=

∑
i pi(x)s̃i(x).

Proposition 9.3 (Bundle Homotopy Theorem). Let B be a (para)compact, hausdorff space,
A a topological space and f, g : B → A homotopic maps. Then for any (E, ξ) ∈ Vectk(A),
f∗(E) ∼= g∗(E).

We will assume that B is compact. Let h : B × [0, 1] → A be the homotopy from f
to g. We have the pullback h∗(E) and we define Et ∈ Vectk(B) to be h∗(E) restricted to
B × {t}. We will show that if Et ∼= F, then there exists ε > 0 such that Es ∼= F for all
s ∈ (t− ε, t+ ε). The result will then follow by the connectedness of [0, 1].

We first use the pullback under the projectionπB : B×[0, 1] → B to extend F to a vector
bundle π∗BF over B× [0, 1]. Note the restriction of π∗BF to B× {t} is naturally isomorphic
to F for all t. Since Et and F are isomorphic there is a section σ : B → Hom(Et, F) such
that σ(b) is invertible for all b ∈ B. Identifying B with B × {t} and Hom(Et, F) with
Hom(h∗(E), π∗BF) restricted to B × {t}, by the previous lemma s extends to a section
σ̃ : B × [0, 1] → Hom(h∗(E), π∗BF). Since the GLn(k) is open in Hom(kn,kn) it follows
that for all b ∈ B there is an open neighborhood of (b, t) in B × [0, 1] where σ̃ takes
values in the invertibles. Passing to a finite subcover there is a strip B × [tε, t + ε] on
which σ̃ takes values in the invertibles. This means that for all s ∈ [t− ε, t+ ε] there is
an isomorphism of Es and π∗BF|B×{s} ∼= F.

It is an exercise to adapt this proof to the paracompact setting. Truthfully, our proof
actually suggests the following convenient restatement, which can be seen to be equiv-
alent:
Proposition 9.4 (Bundle Homotopy Theorem, general version). Let B be a paracompact,
hausdorff space. For any vector bundle E over B× [0, 1] the vector bundles E0, E1 ∈ Vectk(B)
obtained by restricting to B× {0} and B× {1} are isomorphic.
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Here is one of the main corollaries of the Bundle Homotopy Theorem:

Proposition 9.5. If B is paracompact, hausdorff, and contractible, then every vector bundle
over B is trivial.

Choose a point x ∈ B. Since B is contractible the identity map id is homotopic to the
constant map cx : B → {x}. For (E, ξ) ∈ Vectk(B), E ∼= id∗(E) while on the other hand
c∗x(E) is trivial.

For a paracompact, hausdorff spaceXwedefine the coneCX overX to be the quotient
ofX×[0, 1] obtained by identifyingX×{1} to a single point. Note thatCX is contractible,
whence all vector bundles over CX are trivial.

10. Lecture 10

The Bundle Homotopy Theorem gives strong evidence that the study of vector bun-
dles properly belongs to the realm of algebraic topology. The main goal of the next
several lectures will be to develop this idea in precise detail.

10.1. Clutching. We will focus on one straightforward but profound consequence of
the Bundle Homotopy Theorem:

Proposition 10.1. Let B be a paracompact, hausdorff space. Suppose that B is locally con-
tractible, i.e., B admits an open cover {Ui} where each Ui is contractible. Then every vector
bundle over B can be obtained from the gluing construction for some cocycle {gij} defined over
{Ui}.

We first apply this over the spheres where it is known as clutching. Specifically
we write Sn = Dn+ ∪Sn−1 Dn− where Dn± are the northern and southern hemispheres
(topologically both are the (closed) n-disk) and Sn−1 = Dn+ ∩ Dn− is the equator. The
previous proposition tells us the anyN-vector bundle over Sn is determined by a single
continuous map g : Sn → GLN(k) as the cocycle condition is trivially satisfied. Note
that technically we should enlarge the hemispheres slightly and speak of the map g as
being defined over a band Sn−1 × (−ε, ε), but as we will see this works out to the same
thing.

[Here I went over examples of clutching maps for TS2 and CP1. There is a strong pictorial
component to these arguments which may take some time for me to reproduce here. In the mean-
time see Hatcher.]

Proposition 10.2. If f, g : Sn−1 → GLN(k) are homotopic then the vector bundles Ef, Eg ∈
Vectk(S

n) induced by clutching are isomorphic.

Choose a homotopy h : Sn−1× [0, 1] → GLN(k). Since {Dn+× [0, 1], Dn−× [0, 1]} gives a
cover of Sn × [0, 1] with intersection Sn−1 × [0, 1] we can apply the gluing construction
over h to create a vector bundle Eh over Sn−1 × [0, 1] whose restrictions to Sn × {0} and
Sn× {1} are isomorphic as Sn bundles to Ef and Eg, respectively. By the general form of
the Bundle Homotopy Theorem Ef ∼= Eg.

For two topological spaces X and Y, we define [X, Y] to be the space of all homotopy
classes of maps from X to Y with the quotient compact-open topology from YX. The
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previous proposition thus shows there is a map [Sn−1,GLN(k)] → VectNk (Sn). In the
case that k = C we will now show that this is an isomorphism.

Proposition 10.3. There is a bijective correspondence betweenVectNC (Sn) and [Sn−1,GLN(C)].

Wehave already defined themap in one direction, so let’s construct the inverse. Since
{Dn+, D

n
−} is a contractible cover, any vector bundle over Sn is obtained from some clutch-

ing function over g : Sn−1 → GLN(C). Recall that the choice of this clutching function
(cocycle) is not well-defined but any other such choice g ′ : Sn−1 → GLN(C) will be
equivalent via maps λ+ : Dn+ → GLN(C) and λ− : Dn− → GLN(C). However, recall that
GLN(C is path connected, whence asDn± are contractible λ± are homotopic to constant
maps to the identity, thus g ′ = λ−1− gλ+ ∼ g. This shows that the map from a vector
bundle to the homotopy class of its clutching function is a well-defined inverse to the
gluing construction.

Exercise 10.4. Modify this proof to show there is a bijective correspondence between
the oriented, realN-bundles VectNR,+(Sn) and homotopy classes [Sn−1,GL+

N(R)]. (Recall
GL+

N(R) is all invertibles with positive determinant.)

In fact there was nothing particularly special about Sn here. For any space X, we
define the suspension SX as the quotient of X× [−1, 1] given by identifying X× {−1} a
single point andX×{1} to a single point. Note that SX = CX−∪X×{0}CX+, whereCX± are
copies of the cone over X. When X = Sn−1 this is nothing other than the hemispherical
decompositionwe have beenworkingwith above. Moreover, since the cones are always
contractible, we have that the reasoning above applies verbatim, so:

Proposition 10.5. Let X be a (para)compact, hausdorff space. Then there is a bijective corre-
spondence between VectNC (SX) and [X,GLN(C)].

Since for any clutching function g : X→ GLN(C)we can reduce its structure group to
U(N), by using the above identificationwe have that [X,GLN(C)] ∼= [X,U(N)]. However
this can be seen much more directly:

Proposition 10.6. U(n) is a deformation retract of GLn(C).

Let A ∈ GLn(C). By polar decomposition A = u|A| for some u ∈ U(n). Since |A| is
positive and invertible, it can be checked that t|A|+(1− t)1 is invertible for all t ∈ [0, 1].
The maps ht : A 7→ tu|A|+ (1− t)u provide the deformation retract.

Since U(n) is path connected, the space of based homotopies is equivalent to the
space of unbased homotopies, whence we have that

VectNC (Sn) ∼= [Sn−1,U(N)] ∼= πn−1(U(N)).

What are these groups? Much like in the case of homotopy groups of spheres, they are
still largely mysterious. However, consider the inductive limit U := lim−→U(n) under the
connecting maps im,n : U(m) → U(n) where form < n

im,n : U(m) 3 A 7→ (
A 0
0 1n−m

)
.
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We have that πk(U) = lim−→πk(U(n)) under the connecting maps (im,n)∗ : πk(U(m)) →
πk(U(n)). Miraculously, it turns out that πk(U) is computable and in fact π0(U) = 0,
π1(U) ∼= Z, and πi+2(U) ∼= πi(U)! This result is a consequence of the Bott Periodicity
Theorem.

11. Lecture 11

11.1. Principal G-bundles. [There was a presentation by Joe Knight on this topic]

11.2. DefiningK−1(X). From the clutching constructionwehave seen that VectNC (SX) ∼=
[X,U(N)] If X is compact the inductive limit topology on U is compatible with the quo-
tient compact-open topology on [X,U(n)] whence lim−→[X,U(n)] ∼= [X,U].

For a compact space X, we then define K−1(X) := [X,U].

12. Lectures 12

12.1. K−1(X) as an abelian group. Wewill now discuss the abelian group structure on
K−1(X). For maps g1, g2 : X → U there are two immediately obvious ways of going
about taking a product of [g1], [g2] ∈ K−1(X). First one could use the fact that the range
has a group structure to define [g1] ∗ [g2] = [g1g2]. Secondly, more in keeping with the
vector bundle perspective, one could notice that by compactness the ranges of these
maps must both be contained in U(n) for some n sufficiently large, so we could define
[g1] + [g2] := [g1 ⊕ g2], where

(g1 ⊕ g2)(x) :=
(
g1(x) 0
0 g2(x)

)
∈ U(2n) ⊂ U .

It is a quick exercise to check this operation is well-defined at the level of homotopy
classes. By post-composing with a rotation, we see that g1 ⊕ g2 and g2 ⊕ g1 are homo-
topic, whence [g1] + [g2] = [g1 ⊕ g2] = [g2 ⊕ g1] = [g1] + [g2]which shows that “+” is at
least a commutative operation on pairs of homotopy classes.

Let’s get back to that first operation we defined. For the block embedding U(n) ×
U(n) ⊂ U(2n), let ρt be a path of rotations such that ρ0 is the identity and conjugat-
ing by ρ1 interchanges the two copies of U(n). Thus for g1, g2 : X → U(n) we have
that g1ρ−1t g2ρt : X → U(2n) shows that [g1] ∗ [g2] = [g1] + [g2]. This also establishes
associativity of the sum, thus summation gives an abelian monoid structure to K−1(X).

We will now showwhy K−1(X) is actually a group. First note that for 1X, the constant
maps to the identity, we have that [g] + [1X] = [g · 1X] = [g], whence [1X] is the identity.
The natural candidate for the inverse of [g] is [g−1] where g−1(x) := g(x)−1. Since this
is just post-composing with the continuous inverse for U it is easy to check this is well-
defined at the level of homotopy classes. Thus [g−1] + [g] = [g−1g] = [1X], so we have
defined an inverse.

Let’s see what is going on from the point of view of vector bundles. If E is a vector
bundle on SX, then as SX is compact, we have that E ⊂ SX×Cn for some n sufficiently
large. Let E⊥ be the complement of E and let g⊥ be its clutching function. Then it can
be checked that g · g⊥ = g⊥ · g is a clutching function for the trivial bundle, whence
[g⊥] = −[g]. However, it is not immediately clear why constructing the inverse this
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way is well-defined. We will revisit this issue later when we construct K0(X). It turns
out that there is a multiplication structure on K−1(X) making it a ring, but this is also
slightly opaque to define without first describing K0.

Note that while there is a bijective correspondence between complexN-bundles and
[X,U(N)], there is not quite such a correspondence at the level of K−1(X) as we have
effectively “squished” all of the trivial bundles to a single class. What to do about this
at the level of K0 will be the distinction between reduced and unreduced K-theory.

13. Lecture 13

The computation of K−1(X) will lie out of reach for most basic examples without
developing more machinery. However, for the moment, let’s compute one extremely
important example, K−1(S1). First note that if X and Y are homotopy equivalent, then
K−1(X) ∼= K−1(Y). Thus if K−1(X) = 0 for X contractible. Since U is path connected, we
also have that K−1(S

0) = 0.

Proposition 13.1 (“Baby Bott”). K−1(S1) ∼= [S1,U(1)] ∼= Z as groups.

Any element ofK−1(S1) is represented by amap g : S1 → U(n) for somen sufficiently
large. The map pn : U(n) → S2n−1 which reads off the rightmost column vector is a
principal U(n−1)-bundle, i.e., U(n)/U(n−1) ∼= S2n−1. We have that pn◦g : S1 → S2n−1

is contractible to the constant map to the coset of the identity if n ≥ 2. Since any fiber
bundle has the homotopy lifting property (see Hatcher, Algebraic Topology, p. 379),
this lifts to give a homotopy from g to a map g ′ : S1 → U(n−1). We see that the desired
conclusion holds inductively.

Thinking about this a little more, it follows that π1(SU(n)) = 0 for all n, whence
explicitly g is homotopic to det(g). As a side note it can be shown that U(n) is rationally
homotopy equivalent to S1 × S3 × · · · × S2n−1.

The canonical generator of K−1(S1) is [z 7→ z]which as a clutching function gives the
canonical line bundle γ1 over CP1 ∼= S2. This is known as the Bott element.

Note that the previous proposition can be easily restated as:

Proposition 13.2. Every complex vector bundle over S2 is a line bundle or a sum of a line
bundle and a trivial bundle.

13.1. Vector Bundles and Homotopy Theory. We have already established that
VectkC(SX) ∼= [X,U(k)]. Is there a target space such that VectkC(X) ∼= [X, Y]? Whether you
appreciate being asked leading questions or not, the answer is, ‘yes,’ and we will now
set about demonstrating this.

For natural numbers k ≤ n, recall the complex Grassmannian manifold Grk,n =
Grk,n(C) is the space of all k-dimensional subspaces of Cn. On can topologize this for
instance by realizing Grk,n as the space Pk(n) = {p ∈ Mn(C) : p = p∗ = p2, tr(p) = k}
of all rank k projections with the restriction of any of the natural topologies onMn(C).
Remember there is a canonical (tautological) vector bundle (Ek,n, γk,n) defined as all
pairs (V,~v) where V ⊂ Cn is a k-dimensional subspace and ~v ∈ V .

The Stiefel manifold Vk,n is defined to be the set of all orthonormal k-tuples of vec-
tors in C. The projection map p : Vk,n → Grk,n which sends such a k-tuple to its span
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clearly has the structure of a principal U(k)-bundle. In fact, Vk,n⊗U(k)Ck is isomorphic
to the tautological bundle on Grk,n.

There is a natural embedding Grk,n ↪→ Grk,n+1. We define Grk,∞ to be the inductive
limit. Similarly, we construct the inductive limits of the Stiefel manifolds, Vk,∞. The
inductive limit of the projections pn : Vk,n → Grk,n gives a projection p : Vk,∞ → Grk,∞
again forming a principal U(k)-bundle.

We write Vectk,nC (X) to be the set of all complex k-bundles over X which admit an
n-frame. We also write [X,Grk,∞]n to be all homotopy classes in [X,Grk,∞] represented
by maps whose image lies in Grk,n.

Proposition 13.3. Let X be a compact space. There is a bijective correspondence between
[X,Grk,∞]n and Vectk,nC (X) given by [f : X→ Grk,n] 7→ f∗(γk,n).

This is a well-defined map by the Bundle Homotopy Theorem, so we need only con-
struct an inverse. For E ∈ Vectk,nC (X) we can realize E ⊂ Cn. Let gE : X → Grk,n be the
map gE : x 7→ Ex ⊂ Cn be the mapwhich sends x to its fiber inCn. It is readily apparent
that g∗E(γk,n) is isomorphic to E.

Conversely, for f ∈ [X,Grk,n] and E = f∗(γk,n) a choice of n-frame for E is implicit
in the pull-back over the tautological bundle for which gE = f. Thus, while the map
gE depends on the embedding E ↪→ X × Cn, we are fine as long as we can show the
homotopy class of the map is well defined. To this end, let h1, h2 : E → X× Cn be two
n-frames for the bundle E. For t ∈ [0, 1] and e ∈ E, define ht : E → Cn ⊕ Cn ∼= C2n
to be ht(e) := (x, (1 − t)~vx ⊕ t~wx) where (x,~vx) = h1(e) and (x, ~wx) = h2(e). It is easy
to check that each ht is an n-frame. Thus E 7→ [gE] ∈ [X,Grk,2n] is a well-defined map
from Vectk,nC (X) to [X,Grk,2n].

From this it immediately follows that:

Proposition 13.4. For any compact spaceX there is a bijective correspondence betweenVectkC(X)
and [X,Grk,∞].

The gluing construction effectively provides a correspondence between isomorphism
classes of complex k-bundles over X and principal U(k)-bundles over X. Thus, the pre-
vious proposition can thus be restated as there is a bijective correspondence between
isomorphism classes of principal Uk-bundles and homotopy classes [X,Grk,∞] obtained
by pulling back the canonical principal U(k)-bundle p : Vk,∞ → Grk,∞.

14. Lecture 14

In general, for a topological group G, we say that a space BG is a classifying space
for G if there is a principal G-bundle p : EG → BG such that for any compact space X
there is a bijective correspondence between isomorphism classes of principalG-bundles
over X and [X,BG] obtained by pulling back the bundle EG. By previous proposition
we can take Grk,∞ as BU(k). By work on Milnor, every topological group G admits
a classifying space. The construction is analogous to the familiar bar construction in
homology theory, so is quite unwieldy to work with in practice.

For the infinite unitary groupU, we obtain amodel ofBU by noting there is a natural
map Grk,n → Grk+1,n+1 obtained by summing with a one-dimensional space an this is
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well behavedwith respect to the inductive limits giving an inclusion Grk,∞ ↪→ Grk+1,∞.
We define BU to be the inductive limit. Again, by the gluing construction, every prin-
cipal U-bundle over a compact space is represented by a U-valued cocycle on a finite
cover which must reduce to a U(N)-cocycle for someN sufficiently large again by com-
pactness. In other words every principal U-bundle P is of the form P = P ′ ×U(N) U for
some principal U(N)-bundle P ′ for some N sufficiently large. It is apparent that the
map [X,Grk,∞] → [X,Grk+1,∞] induced by the inclusion Grk,∞ ↪→ Grk+1,∞ identifies
on the principal bundle side with the map P 7→ P×U(k) U(k+ 1). Since lim−→[X,Grk,∞] ∼=
[X, lim−→Grk,∞] = [X,BU] for any compact space X, this shows that BU is indeed a classi-
fying space for U.

14.1. The Grothendieck Construction. Given A an abelian monoid, we can define an
abelian group K(A) and a homomorphism ıA : A→ K(A) such that for any homomor-
phism ϕ : A → B of abelian monoids, there is a homomorphism of abelian groups
K(ϕ) : K(A) → K(B) such that the following diagram commutes:

A
ϕ−−−−→ B

ıA

y ıB

y
K(A)

K(ϕ)−−−−→ K(B)

The group K(A) can be constructed as follows. Define an equivalence relation ∼ on
A×A by (a1, b1) ∼ (a2, b2) if a1 + b2 + c = a2 + b1 + c for some c ∈ A. This relation is
trivially reflexive and is symmetric by commutativity of the sum. Further if (a1, b1) ∼
(a2, b2) ∼ (a3, b3) then a1+b2+ c+b3+d = a2+b1+ c+b3+d = a3+b2+b1+ c+d
for some c, d ∈ A, so setting e = b2 + c+ dwe have (a1, b1) ∼ (a3, b3).

The additive structure on K(A) is [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2] which is
straightforward to check is well-defined as associative. The zero class is [a, a] for any
a ∈ A and the inverse class to [a, b] is [b, a]. The map ıA : A → K(A) is given by
a 7→ [a, 0] where 0 is the identity in A. Finally, if ϕ : A → B is a homomorphism of
abelian monoids, then [a, b] 7→ [ϕ(a), ϕ(b)] induces a group homomorphism K(ϕ) :
K(A) → K(B) which can be easily seen to fit into the commutative diagram above.
Sometimes we write the class [a, b] as the formal difference [a] − [b].

Moreover, suppose that A is equipped with a second associative operation ∗ which
distributes over summation. Then K(A) is equippedwith a ring structure by ([a]−[b])∗
([c] − [d]) = [a ∗ c] − [a ∗ d] − [b ∗ c] + [b ∗ d] = [a ∗ c+ b ∗ d] − [a ∗ d+ b ∗ c]. The ring
structure is also natural in the sense of fitting into the commutative diagram above.

Exercise 14.1. Show that the Grothendieck construction applied to the non-negative
integers yields the integers.

14.2. Defining K0(X) and K̃
0
(X). There are two natural functors from the category

compact, hausdorff topological spaces to abelian groups defined as terms of VectC(X).
One is motivated is motivated directly from vector bundles and associated operations
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on them, while the other is motivated more from the homotopy-theoretic perspective
as outline in the previous section. We will begin with the former.

For a compact, hausdorff topological space X, VectC(X) is an abelian monoid under
direct sum (the 0-dimensional vector bundle is the identity). We thus define K0(X) :=
K(VectC). More over the tensor product of vector bundles is seen to distribute over
summation, so K0(X) is a ring.

The basic properties of the functor K0(·) naturally follow from operations on vector
bundles. If X and Y are homotopy equivalent, then K0(X) ∼= K0(Y) by the Bundle Ho-
motopy Theorem. We have the K0(pt) ∼= Z as a ring, since all vector bundles are trivial,
so E 7→ dim(E) gives an isomorphism between VectC(pt) and N ∪ {0} which is com-
patible with summation and the tensor product. If f : X → Y is continuous, then for
E, F ∈ VectC(Y)we have that f∗(E⊕F) ∼= f∗E⊕f∗F and f∗(E⊗F) ∼= f∗E⊗f∗F, whence the
pullback induces a (unital) ring homomorphism K0(f) : [E] − [F] 7→ [f∗E] − [f∗F] from
K0(Y) to K0(X), i.e., the functor K0 is contravariant.

If we specialize to the inclusion pt → X, this induces amapK0(X) → K0(pt)which, in
the case thatX is connected, is independent of the choice ofmap as every fiber belonging
to a single connected componentmust have the samedimension. Let us denote thismap
ε : K0(X) → Z. Since X has at least one vector bundle in every dimension we have that:
Proposition 14.2. ε : K0(X) � Z is a surjective ring homomorphism.

Note that since X is compact, every vector bundle admits a frame, whence for every
bundle E ↪→ X × CN, there is the complementary bundle E⊥ so that E ⊕ E⊥ ∼= 1N, the
trivial bundle of dimension N. Thus for any [E] − [F] ∈ K0(X) we have that [E] − [F] =
[E ⊕ F⊥] − [F ⊕ F⊥] = [E ′] − [1n]. If X is connected, the kernel of the homomorphism ε
can thus be identified with all classes [E] − [1n] where dim(E) = n. Our first definition
of K̃

0
(X) is the kernel of εwith the inherited ring structure.

Proposition 14.3. ε : K0(S1) ∼= Z is a ring isomorphism, whence K̃
0
(S1) ∼= 0.

From the cocycle perspective, we have that every complex n-bundle on S1 is given
by a clutching map f ∈ [S0,U(n)], since U(n) is path connected, it follows that every
complex bundle over S1 is trivial, whence the isomorphism.

Of course, we could define the real K-group K0R(X) by applying the Grothendieck
construction to VectR(X) and K̃

0

R(S
1) is defined similarly. This is again a ring in the

analogous way. If we compute K0R(S1), we can still do so by reducing to clutching
functions, this time in lim−→[S0, O(n)]. Since O(n) has exactly two connected compo-
nents for each n, we have that any clutching function f : S0 → O(n) is homotopic to
det(f) : S0 → {−1, 1}. Whence every nontrivial real vector bundle over S1 is isomorphic
to the Möbius bundle. Thus K0R(S1) ∼= Z[x]/(x2 − 1) with the natural ring structure.
This gives that K̃

0

R(X)
∼= Z/2Z; however, the product structure is trivial (all products

are zero). Thiswill probably be the last time in these notes thatwe discuss realK-theory,
so I hope you enjoyed this digression, but not too much.

We now turn to the second approach to defining the K̃
0
functor via homotopy theory.

We say two vector bundles E, F ∈ VectC(X) are stably equivalent (written E ∼s F) if
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E ⊕ 1n ∼= F ⊕ 1m for some m,n ∈ N ∪ {0}. Note that the vector bundles need not have
the same dimension. There is a natural monoid structure on the stable equivalences
classes defined by [E]s+[F]s := [E⊕F]s. It is straightforward to check that this operation
is well-defined, commutative, and associative. The class [1]s of the trivial line bundle
is a obviously the unit. We now construct an additive inverse. Let h1 : E → X × Cm
and h2 : E → Cn be two frames of the same vector bundle. By extending we have
that h1 ⊕ 0m+2n, 02m+n ⊕ h2 : E → X × C2m+2n are two orthogonal frames for E in the
same bundle, so by essentially the same reasoning as in the proof of Proposition 13.3,
we have that h1(E)⊥ ⊕ 1n = (h1 ⊕ 0n(E))⊥ ∼= (0m ⊕ h2(E))⊥ = 1m ⊕ h2(E)⊥, whence
E 7→ h1(E)

⊥ is well-defined at the level of stable equivalence classes. Thus for any
splitting E⊕ F ∼= X×Cl we have that [E]s + [F]s = [1l]s, so [F]s = −[E]s is a well-defined
inverse, whence stable equivalence classes of vector bundles form an abelian group.
Let’s call the group of stable equivalence classes of complex vector bundles over X by
G(X).

Proposition 14.4. There is an isomorphism of groups θ : K̃
0
(X) → G(X) given by θ : [E] −

[1n] 7→ [E]s.
The map VectC(X) 3 E 7→ [E]s ∈ G(X) is clearly a surjective homomorphism of

monoids, whence induces a surjective homomorphism K0(X) � G(X). Moreover, the
trivial bundles are all sent to the identity in G(X) so this maps factors to a surjective
homomorphism K̃

0
(X) � G(X). We need only show this map is also injective. If E and

F are comlex bundles of respective dimensionsm and n, then we have that [E]s = [F]s if
and only ifE⊕1n⊕1k ∼= F⊕1m⊕1k for some k, whence by definition of theGrothendieck
construction we have that [E] − [1m] = [F] − [1n].

Exercise 14.5. As we noted before, K̃
0
(X) inherits a ring structure as an ideal in K0(X).

Write down this ring structure in terms of G(X).

We are now ready to give a characterization of K̃
0
(X) in terms of homotopy theory.

Proposition 14.6. There is a bijective correspondence between [X,BU] and stable equivalence
classes of complex vector bundles over X.

ByProposition 13.4 there is a bijective correspondence betweenVectkC(X) and [X,Grk,∞].
By the proof of that result is straightforward that the map E 7→ E⊕ 1 sending VectkC(X)
into Vectk+1C (X) corresponds with the induced map [X,Grk,∞] → [X,Grk+1,∞] given by
the inclusion Grk,∞ ↪→ Grk+1,∞.

In particular [X,BU] has the structure of an abelian group. We conclude this section
by outlining how to construct the group structure internally. Note that we can place an
abelian monoid structure on [X,BU]. First note there is a natural map σ : BU × BU →
BU by embedding the first copy into the odd coordinates and the second copy into
the even coordinates. We define a sum for for [f], [g] ∈ [X,BU] by ([f] + [g])(x) :=
[µ(f(x), g(x))]. Again, it is not too hard to demonstrate that this is operation is well-
defined, commutative, and associative. Given a splitting E⊕ E⊥ ∼= X×Cn, we have for
the maps fE(x) := Ex ∈ Grk,n and fE⊥(x) := E⊥x ∈ Grn−k,n that [fE] + [fE⊥ ] = [1n] giving
the inverse.
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15. Lecture 15

15.1. Morse Theory. [This lecture was given by Jun Choi]

16. Lecture 16

16.1. Exact sequences of abelian groups and splittings. In this section all capital Ro-
man letters will denote abelian groups. We say that sequence of homomorphisms
A0

f1−→ A1
f2−→ · · · fn−→ An is exact if im(fi) = ker(fi+1) for all i = 1, . . . , n − 1. A

homomorphismA
f−→ B is said to be split if there is a homomorphism B

g−→ A such that
f ◦ g = idB. The following proposition will be crucial:

Proposition 16.1. Let 0 → A
f−→ B

g−→ C → 0 be an exact sequence. Then f and g are both
split if and only if B ∼= A ⊕ C. Moreover the same conclusion holds if and only if either f or g
is split.

One direction is trivial. Suppose that s and t split f and g respectively. For b ∈ B
write b = (b − tg(b)) + tg(b) then b − tg(b) ∈ ker(g) = im(f). Moreover, the fact
that g splits implies that g restricted to im(t) is injective, whence im(f) ∩ im(t) = {0}
by exactness. By exactness at C, t is injective, and exactness at A implies f is injective.
Thus we have that B is generated by the images of two injective maps which have trivial
intersection. Since B is abelian this implies that B ∼= im(f)⊕ im(t) ∼= A⊕ C. A similar
argument applies when considering f and its splitting s.

Exercise 16.2. Complete the proof of this proposition.

As an immediate consequence it follows that:

Proposition 16.3. K0(X) ∼= K̃
0
(X)⊕ Z.

Wehave that 0→ K̃
0
(X) → K0(X)

ε−→ Z → 0 is exact and the inclusionK0(pt) → K0(X)
given by the map X→ pt provides a splitting for ε.

16.2. Computing K0(S2). We will now describe K0(S2) as a ring. First, somewhat con-
fusingly we write K̃

−1
(X) := K−1(X). The reason for this will become apparent later.

For the moment we just state:

Proposition 16.4. For any compact, hausdorff space X, we have that K̃
0
(SX) and K̃

−1
(X) are

isomorphic as abelian groups.

As we noted earlier we have [SX,BU(k)] ↔ VectkC(SX) ↔ [X,U(k)], so by passing to
direct limits we have that K̃

0
(SX) ∼= K̃

−1
(X) as sets. However, it is not too hard to see

that the group operations we defined on [SX,BU] and [X,U] are compatible under this
identification. Note we can use the ring structure on K̃

0
to define a ring structure on

K̃
−1
.
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Proposition 16.5. As abelian groups K̃
0
(S2) ∼= K̃

−1
(S1) ∼= Z and

K0(S2) ∼= Z⊕ Z = {m[1] + n[γ] : m,n ∈ Z}
where [1] is the class of the trivial line bundle and [γ] is the class of the tautological line bundle
over CP1 ∼= S2. Moreover, [β] := [γ] − [1] ∈ K̃

0
(S2) corresponds with the Bott element

(generator) of K̃
−1
(S1).

This follows directly from the splitting K0(S2) ∼= K̃
0
(S2)⊕ Z discussed above.

We now describe the ring structure on K̃
0
(S2). It suffices to understand how [γ] be-

haves under taking powers. Form ∈ N, let γm be the line bundle which ism-fold tensor
power of the tautological line bundle γ. Since γ is obtained by clutching over S1 by the
map z 7→ z, we have that γm is obtained by clutching over S1 by the map z 7→ zm. We
can extend this definition of γm to all integers, e.g., γ−1 corresponds to clutching over
z 7→ z−1, etc. For γm ⊕ γn the clutching function is

z 7→ (
zm 0
0 zn

)
∼

(
zm+n 0
0 1

)
whence we have the relation [γm] + [γn] = [γm+n] + [1]. Iterating this we see that

m[γ] = [γm] + (m− 1)[1] = [γ]m + (m− 1)[1]

holds for all integers.
For a variable x, let Z[x] denote the ring of polynomials in xwith coefficients in Z. If

p(x) ∈ Z[x] we write Z[x]/p(x) to be the ring which is the quotient of Z[x] modulo the
ideal generated by p(x).

Proposition 16.6. As a ring we have that K0(S2) ∼= Z[γ]/(γ − 1)2 ∼= Z[β]/β2 where the
isomorphisms are given by [γ] 7→ γ and [β] 7→ β, respectively.

This follows easily from the computation
([γ] − [1])2 = [γ]2 − 2[γ] + 1 = (2[γ] − 1) − 2[γ] + 1 = 0.

16.3. The Short Exact Sequence. In this sectionwe begin thework of extending K̃
0
and

K̃
−1

to a generalized cohomology theory with higher (reduced) K-groups K̃
−n

for all n.
The main goal of this section is to establish:
Proposition 16.7 (Short Exact Sequence). If X is a compact, hausdorff space and A ⊂ X is
closed then the sequence A i−→ X

q−→ X/A induces an exact sequence on reduced K-theory

K̃
0
(X/A)

q∗−→ K̃
0
(X)

i∗−→ K̃
0
(A).

Clearly the pullback of any bundle over X/A along q is trivial when restricted to A.
As i∗ is the map induced by restriction to A, this shows that im(q∗) ⊂ ker(i∗). In the
other direction, we will use the description of K̃

0
as stable equivalence classes of vector

bundles. If E is a vector bundle over X with i∗[E]s = [E|A]s = [1]s, then by replacing E
with E⊕ 1k for k sufficiently large we can assume without loss of generality that E|A is
a trivial bundle over A. In other words, we can assume that E|A = A× Cn for some n.
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There is an obvious candidate for the preimage class of E under q∗, namely the class
of the quotient E/ ∼ where (x,~v) ∼ (y,~v) whenever ~v ∈ Cn and x, y ∈ A. The only
sublety is whether there is an open neighborhood of the point A/A in X/A for which
E/ ∼ trivializes. However, by Lemma 9.2 we can extend each of the n pointwise linearly
independent sections s1, . . . , sn : A→ A×Cn on a common open neighborhoodU ofA.
Since these section vary continuously there is an open neighborhood V of A contained
in Uwhere the sections remain pointwise linearly independent. These maps reduce to
continuous maps s ′1, . . . , s ′n : V/A → E/ ∼ |V/A in the obvious way thus provide a local
trivialization for E/ ∼ at A/A. Thus E/ ∼ is a vector bundle over X/A.

17. Lecture 17

17.1. The Long Exact Sequence. Given a compact, hausdorff, pointed space (X, x0)
and a closed subspace x0 ∈ A ⊂ X, we define the relative (reduced) K-theory to be
K̃
0
(X,A) := K̃

0
(X/A). Considering the reduced suspension ΣX with the canonical

inclusion ΣA ⊂ ΣX we have that ΣX/ΣA is homeomorphic to Σ(X/A). (This is not
quite true for the suspension.) Therefore we have that K̃

−1
(X,A) := K̃

0
(ΣX,ΣA) ∼=

K̃
0
(Σ(X/A)) ∼= K̃

−1
(X/A).

Analogusly, we can define the higher (relative) K-groups by K̃
−n

(X) := K̃
0
(ΣnX) and

K̃
−n

(X,A) := K̃
0
(ΣnX,ΣnA) ∼= K̃

0
(Σn(X/A)) for all n ∈ N. Rephrasing the results from

the previous lecture, this means that for each n ∈ N the sequence

K̃
−n

(X,A)
q∗−→ K̃

−n
(X)

i∗−→ K̃
−n

(A)

is exact. Themain result of this section is that these sequences can be stitched together to
form one infinite exact sequence of K-groups, the “long exact sequence” which should
be familiar from general (co)homology theory.

Proposition 17.1. There is a map ∂ : K̃
−1
(A) → K̃

0
(X,A) so that the sequence

K̃
−1
(X) → K̃

−1
(A)

∂−→ K̃
0
(X,A) → K̃

0
(X)

is exact.

The trick to building this map is the very useful one of turning a quotient into an
inclusion via homotopy theory. For a (based) inclusion Y ↪→ X of compact, hausdorff,
based spaces we have that X/Y is homotopy equivalent to X∪CY where we identify the
base of the cone with the image of Y, yielding a sequence of inclusions

Y ↪→ X ↪→ X ∪ CY.

In this way we have reimagined the sequence A→ X→ X/A in a way that we can now
extend indefinitely by applying the operation of “coning off the previous thing” in the
sequence! Thus we have

Y ↪→ X ↪→ X ∪ CY ↪→ (X ∪ CY) ∪ CX ↪→ ((X ∪ CY) ∪ CX) ∪ (X ∪ CY) ↪→ · · ·
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and so on. The (k + 2)-nd term in the sequence is thus homotopic the the quotient of
the (k + 1)-st term of the sequence by the k-th term, so the chain of groups we get by
applying the K̃

0
functor to the sequence is exact at each term.

Wehave that (X∪CY)∪CX is homotopy equivalent toΣY and ((X∪CY)∪CX)∪(X∪CY)
is homotopy equivalent to ΣX (note that SX ∼= CX/X).

Exercise 17.2. Draw some pictures to verify this.

Applying these identifications we have an exact sequence

· · ·→ K̃
0
(ΣX) → K̃

0
(ΣA) → K̃

0
(X/A) → K̃

0
(X) → K̃

0
(A).

The map ∂ : K̃
−1
(A) → K̃

0
(X,A) is idenitfied with the middle map in this sequence.

17.2. Applications of the long exact sequence.

18. Lecture 18

18.1. Towards Bott Periodicity. Let X be a compact, hausdorff space. From previous
discussion we know that [X,ΩBU] ∼= [ΣX,BU] ∼= [X,U]. The first isomorphism is
just the fact that the loop and reduced suspension functors are adjoint and the second
isomorphism follows from the fact that both homotopy classes describe isomorphism
classes of vector bundles on ΣX. As a consequence, note that πk+1(BU) ∼= πk(ΩBU) ∼=
πk(U) for all k ∈ N. In fact the connection between these two spaces is much deeper.
The goal of this section is to prove the following theorem:

Proposition 18.1. For each k, the spaces U(k) andΩBU(k) are homotopy equivalent.

Since inductive limits commute with the loop functor, this shows that U andΩBU are
also homotopy equivalent.

Before sketching the proof, we discuss a bit of notation and some generalities. We
will say that two topological spaces X and Y are weakly homotopy equivalent if there
is a map f : X → Y which induces a bijection f∗ : π0(X) → π0(Y) and isomorphisms
f∗ : πk(X) → πk(Y) for all k ∈ N. It turns out that if both X and Y have the homotopic
to CW complexes, then weak homotopy equivalence implies homotopy equivalence, so
we will not have much reason to trouble ourselves with the distinction for the purpose
of these notes.

For any topological group G, it can be shown there is a classifying space and a prin-
cipal G-bundle EG→ BG with EG contractible. It can also be shown through abstract,
homotopy-theoretic considerations that this implies thatG is always weakly homotopy
equivalent toΩBG. In fact, as we will see shortly, the map f : G→ ΩBG can be written
easily. We will use the stucture of BU(k), along with a little linear algebra, to construct
an explicit homotopy inverse to f.

Let (B, b0) be a based space. The path space PB is the space of all continuous maps
f : [0, 1] → B with f(0) = b0. The path space is naturally a based space with base point
the constant path at b0. Let F→ E

p−→ B be a fibration of based spaces. This means that
p : (E, e0) → (B, b0) is an F-fibration with e0 ∈ p−1(b0) ∼= F. For any based space B, the
map ev : PB→ B given by ev : f 7→ f(1) is a natural based fibration with F = ΩB. Given
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such a based fibration with E contractible, our first objective is to create a commutative
diagram of based maps:

F −−−−→ E
p−−−−→ By y ∥∥∥

ΩB −−−−→ PB
ev−−−−→ B

To do so, since E is contractible, let h : E× [0, 1] → E be a homotopy from the constant
map to e0 to the identity map on E. Then x 7→ h(x, t) gives a map E → PE. The map
p : E → B induces a map p∗ : PE → PB which we can compose with the previous map
to get the middle downward arrow in the diagram. Restricting this map to p−1(b0) ∼= F
then gives the leftmost downward arrow. Applying this to the classifying spaceB = BG,
this is the map f : G→ ΩBG.

We will directly check that ths applies to the classifying bundle Vk,∞ → Grk,∞ =
BU(k) which boils down to showing:

Proposition 18.2. For eack k, Vk,∞ is contractible.

Let C∞ be the inductive limit of (Cn) under the standard inclusions, and let Cev be
all vectors supported on even coordinates. For each n there is a path of unitaries which
takes the copy ofCn inC2n situated on the firstn coordinates to the copy situated on the
even numbered coordinates, preserving the order. Applying inductive limits this yeilds
a homotopy of C∞ onto Cev through orthogonality preserving maps. For each k, this
induces a homotopy from Vk,∞ to the submanifold Vk,ev of all orthonormal k-tuples in
Cev by applying the homotopy to each element of a k-tuple. Now given an orthonormal
k-tuple v1, . . . , vk ∈ Cev we have that t 7→ √1− tvi + te2i−1 gives a homotopy through
orthonormal k-tuples from {v1, . . . , vk} to {e1, e3, . . . , e2k−1} where ei is the ith element
of the canonical orthonormal basis for C∞. We can then map this homotopy back into
Vk,ev showing that Vk,ev ∼= Vk,∞ is contractible.

In the case that B = BU(k) we now describe how we can reverse the vertical arrows
in the commutative diagram, constructing a homotopy inverse for the map U(k) →
ΩBU(k).

Proposition 18.3. There is a map υ : PB → PE of based spaces so that x 7→ υ(p)(1) and its
restriction toΩB make the following diagram commute:

F −−−−→ E
p−−−−→ Bx x ∥∥∥

ΩB −−−−→ PB
ev−−−−→ B

An element p ∈ PB is a path t 7→ Vt of k-dimensional subspaces of CN for some N
sufficiently large. The basepoint e0 ∈ E is a distinguished (ordered) orthonormal basis
(v1, . . . , vk) for V0. Let prs,t be the orthogonal projection from Es onto Et for s, t ∈ [0, 1].
For every δ > 0, there is ε > 0 sufficiently small such that whenever |s−t| < ε the image
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of any ordered orthonormal basis of Vs under prs,t is δ-close to an ordered orthonormal
basis of Vt and we can select such one canonically via the Gram-Schmidt process. Thus
starting from an ordered orthonormal basis of Vs we can find a continuous path of
orthonormal bases for Vt with t < s+ ε.

This not only shows that we can lift a path p ∈ PB to a path p̃ ∈ PE but we can do so
in a continuous way over PB. (To be sure we are sweeping a lot of small details under
the rug here.) The map p 7→ p̃(1) ∈ E is the middle arrrow in our diagram. Restricting
toΩB, we have that p̃(1) is another ordered orthonormal basis (w1, . . . , wk) for V0, but
these are in one-to-one correspondence with elements of U(k) by sending the basis to
the unitary defined by vi 7→ wi for all i = 1, . . . , k.

One can compare the two processes in order to convince oneself that they really do
describe the inverse operations to each other, at least up to homotopy. (Sweep, sweep!)

19. Lecture 19

19.1. Bott Periodicity: Bott’s Proof.

20. Lecture 20

20.1. Bott Periodicity: Proof of Atiyah–Bott.

21. Lecture 21

22. Lecture 22
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